
Communication-efficient, Fault Tolerant PIR over Erasure Coded Storage

Andrew Park∗, Trevor Leong∗, Francisco Maturana∗, Wenting Zheng∗, K. V. Rashmi ∗
∗Carnegie Mellon University

andrewpark@cmu.edu, tmleong@andrew.cmu.edu, fmaturan@cs.cmu.edu, wenting@cmu.edu, rvinayak@cs.cmu.edu

Abstract—Private information retrieval (PIR) is a technique
for a client to retrieve an item from a public database
without revealing to an adversarial server the item that was
queried. While multi-server PIR has been well-studied in order
to obtain better communication and computation relative to
single-server schemes, there are far fewer fault-tolerant PIR
schemes which can remain functional even in the presence
of malicious adversaries. In this paper, we present a solution
that combines techniques from both the cryptography and
information theory communities to design robust PIR protocols
that obtain better computation, communication, and storage
compared to prior state-of-the-art schemes. Our results show
that our PIR protocols achieve up to 9.1× lower latency, at
least 39.2× less total communication, and up to 7.3× less
computation than the state-of-art robust PIR protocols for a
database 4GB in size and can withstand two malicious servers,
and continually outperform the robust PIR baselines for a
variety of parameter configurations and failure scenarios.

1. Introduction

Private information retrieval (PIR) is a set of crypto-
graphic techniques that allows clients to retrieve values from
an untrusted data storage such that the storage servers do
not learn anything about the value being retrieved. PIR is
an important fundamental primitive for enabling many ap-
plications such as anonymous messaging [16], [23], private
database querying [50], encrypted search [17], and privacy-
preserving advertising [42].

One particular category of protocols that has garnered re-
cent interest are multi-server PIR schemes [10], which avoid
expensive cryptographic operations like homomorphic en-
cryption required of single-server PIR schemes by distribut-
ing trust over multiple servers. This allows for protocols that
are more computation-efficient compared to single-server
approaches. When considered for practical usage, however,
existing multi-server approaches have one major drawback.
Namely, most existing multi-server PIR protocols are not
robust to either fail-stop or Byzantine servers. Specifically,
though the protocols guarantee that the adversarial servers
do not learn anything about the query, they do not neces-
sarily prevent these servers from returning incorrect results.
Prior works [17] have used MACs to guarantee integrity of
the result. However, such solutions require additional burden
on the client to store and manage a secret key. Additionally,

even if the client does catch malicious behavior, the client
will still not be able to recover her desired result.

Existing fault-tolerant PIR protocols, however, also con-
tain drawbacks when considered for practice. For example,
the works of Goldberg [28] and Devet et al. [19] provide
fault-tolerance at the cost of communication inefficiency. In
particular, both of these schemes require large queries that
are linear in the size of the database, and such inefficiency
becomes a big limiting factor in scaling to larger databases.
An orthogonal line of work by Woodruff et al. [52], is
communication-efficient, but is only able to provide this
efficiency at the cost of more expensive server computation.

Other multi-server PIR protocols developed in the infor-
mation theory community have leveraged erasure-coding to
not only design robust PIR schemes ([1], [3], [49], [53]),
but also minimize server storage and download cost ([2],
[4], [9], [25], [26], [37], [46], [48], [54]). Erasure coding
is a powerful tool for providing error correction (even in
the Byzantine setting) without resorting to full data repli-
cation, thus significantly saving on server-side storage and
computation. However, erasure coded robust PIR schemes
suffer from the same drawbacks as the schemes in [19],
[28], namely linear-sized PIR queries that prevent practical
implementations.

In this paper, we design novel PIR protocols that achieve
better storage, communication, and computation overheads
compared to the prior state-of-art robust PIR protocols. To
achieve this, we first leverage distributed point functions
(DPF [11], [12], [27]), a lightweight cryptographic primitive
which can be used in PIR to provide significant query
bandwidth savings by compressing PIR queries. Next, we
compose DPF with erasure coding as an effective means of
achieving fault tolerance, because it allows for significant
storage and computation savings at the cost of modestly
more servers.

Because our schemes require less storage, communica-
tion, and computation compared to prior works, but require
additional servers, we believe our new schemes could have
use in many decentralized applications, such as decentral-
ized search [38], anonymous communication networks [31],
and decentralized storage [51]. These scenarios typically
have a large number of users whose storage and compute
capabilities are smaller than a cloud provider’s. In addition,
fault tolerance against Byzantine failures will allow our
schemes to remain functional even in the presence of offline
or malicious servers.

In order to design our schemes, the first challenge we

need to tackle is to devise new ways to make existing DPF
designs fault tolerant. Therefore, we design three new DPF
protocols that can tolerate fail-stop faults. First, we extend
the two-server, tree-based DPF scheme [11] to the multi-
server setting that tolerates p−2 out of p failures by carefully
replicating control bits and increasing the number of cor-
rection words without leaking extra information. Next, we
leverage covering designs to the XOR-sharing based multi-
server DPF scheme ([12]) in order to improve communica-
tion. This significantly improves upon a naive approach of
directly using a more common approach such as replicated
secret sharing (RSS), because a big issue of applying RSS is
the extra communication overhead that varies based on the
total number of servers and the security threshold. Finally,
we design a third, fault-tolerant information-theoretic DPF
scheme based on Shamir secret sharing. The base design
requires a large number of servers to serve queries when
the number of items in the database is increased. To loosen
this restriction, we use Hermite interpolation to decrease
the number of servers by using more computation and more
response overhead.

The second part of our design focuses on composing our
new fault-tolerant DPF designs with erasure-coded storage
in order to design three new end-to-end, communication-
efficient and fault-tolerant PIR protocols. Erasure-coding is
a powerful technique that not only provides fault-tolerance,
but also leads to less storage and computation compared
to a replicated scheme. However, our second challenge
is that directly composing our new DPF schemes with
erasure-coded storage is challenging because DPF-based
PIR schemes do not directly work over erasure coding due to
DPF’s additive reconstruction. This reconstruction implies
a PIR protocol that computes independent dot products
between the database values and the function output shares
followed by a final summation of the results at the client,
which requires each server to hold replicated copies of the
database. When the database is erasure coded across mul-
tiple servers, however, the servers no longer hold the same
items. To address this challenge, we design new techniques
to compose our fault-tolerant DPF schemes by transforming
the outputs into the appropriate algebraic structures that can
be used to query erasure coded storage.

Our techniques leverage Reed-Solomon codes in two
different ways: either within each item or across items.
Both methods of erasure-coding were studied in the PIR
context in [2], [26], [48], [49] using linear-sized queries,
and we demonstrate how to transform our sublinear tree-
based DPF and Shamir-based DPF to be compatible with
these approaches. Second, we observe that an additive DPF
scheme that is made fault-tolerant using covering designs
can be composed with the erasure-code is applied across
items. Therefore, we develop a third PIR protocol that
integrates the covering design-based DPF protocol with an
XOR-based MDS encoded storage. Finally, we also take
advantage of erasure code’s properties to support malicious
servers that attempt to return wrong results, and use these
properties to recover from Byzantine faults.

We implement and evaluate both the baseline schemes

(1) (2) (3)

Pr
io

r
W

or
k Boyle et al. DPF Tree Based PIR [10] ✗ ✓ ✗

Boyle et al. Multiparty Based PIR [10] ✗ ✓ ✗
Devet et al. Robust PIR [19] ✗ ✗ ✓

Tajeddine et al. Coded PIR [49] ✓ ✗ ✓
Woodruff et al. Robust PIR [52] ✗ ✓ ✓

O
ur

s Robust DPF Tree Based PIR (Section 5.2) ✓ ✓ ✓

Shamir DPF Based PIR (Section 5.3) ✓ ✓ ✓
Covering Design Based PIR (Section 5.4) ✓ ✓ ✓

TABLE 1: Comparison with prior works: (1) Erasure coded
storage (2) Sublinear query size (3) Robustness to fail-stop
and Byzantine failures

and our solutions with a variety of parameters and scenarios.
In terms of storage, our schemes achieve better per-server
overhead, and achieves better total storage when compared
to the prior state of art replicated robust PIR baselines (up
to 72% less storage). Second, in terms of computation, our
schemes achieve up to 9.1× better per-server computation,
and up to 7.3× better total computation. In addition, when
testing our protocols in failure scenarios, our protocols
have very minimal overhead (∼22 ms for our Shamir-based
scheme, < 1 ms for the other two), and achieve up to 9.1×
less latency compared to the state-of-art erasure coded PIR
protocols which use linear-sized queries. As a downside, our
schemes require a larger number of servers when compared
to a replicated baseline because of our use of erasure-coding.
Overall, our solutions ultimately suggest that combining
erasure coding with cryptographic solutions in the context of
PIR seem to be promising, demonstrating that we can indeed
achieve both communication efficiency and fault tolerance.

2. Background

2.1. Preliminaries

We first describe the notation we use for the rest of the
paper. We define p to be the number of servers that store
a (potentially encoded) public database of size N = 2n.
The parties are enumerated from 1 to p. We assume that the
adversary can compromise up to t servers. We assume that
up to r servers can be non-responsive, while up to b servers
are Byzantine and can fail arbitrarily.

For our MDS code, we use k to represent the reconstruc-
tion threshold of the [p, k]-MDS code, and G to represent
the k-by-p generator matrix associated with the MDS code.
The values range over some finite field F.

We represent the i’th item in a database X as X[i],
where X[i] comprises m field elements. Each X[i] can also
be written as k shards, X[i]1∥X[i]2∥ · · · ∥X[i]k, where each
shard X[i]j comprises m

k field elements. Finally, we use e⃗i
to represent the i’th standard basis vector, and r⃗ to represent
a uniformly random vector over a field F.

2.2. Secret Sharing

A (p, t)-secret sharing scheme, is a protocol that allows
a party to share a secret s in an arbitrary field F to p parties

such that no collusion of t parties can learn anything about
s, while any subset of t + 1 or more (honest) parties are
able to reconstruct the secret.

One standard technique to do this is Shamir secret shar-
ing [45]. The client generates a random degree t polynomial
g(x) = s +

∑t
i=1 rix

i, ri ∈ F and gives each party j the
value g(j) ∈ F. Any subset of t parties cannot learn anything
about s because there exists a degree t polynomial passing
through their t points and any possible value of s, while
t+ 1 or more parties can use interpolation on the function
to recover the value g(0).

Another (p, t)-secret sharing scheme is replicated secret
sharing (RSS) [34]. Let S be the set of all p parties. Given
p parties who wish to withstand against a collusion of up
to t, RSS shares a secret s ∈ F by splitting the secret s
into k =

(
p
t

)
shares in any arbitrary field F. We denote each

share as si ∈ F with the property that s =
∑k

i=1 si. The
shares are distributed by enumerating through all subsets Ai

of size t and giving si to all parties not in Ai. Reconstruction
requires a subset of t + 1 parties since any subset of R of
size t+1 must overlap with all subsets S \Ai, which means
that R has all si shares. Security is maintained because if
a subset T of size less than or equal to t is corrupted, this
subset must be contained within some Ai, which implies
that it does not hold share si and thus cannot reconstruct
the entire secret s.

2.3. Distributed Point Function

A distributed point function (DPF) ([11], [12], [27]) is
a technique that allows a client to split a point function
f(x) (functions that have one nonzero output at a special
index α) into keys k1, . . . , kp, such that any subset of keys
reveals nothing about f(x), while the aggregation of the key
evaluations at a point x result in f(x). At a high level, this
means that the keys represent secret shares of a vector size
N = 2n, where all the elements except the element at index
i is equal to 0. A DPF is defined by the following set of
algorithms:
• Gen(f) → (K1, . . . ,Kp) which on input f ∈ {0, 1}∗,

outputs a p-tuple of keys.
• Eval(i,Ki, x) → yi is a polynomial-time evaluation

algorithm, which on input i ∈ [p] (party index), Ki (key
corresponding to party i) and x ∈ {0, 1}n, outputs an
element yi such that

∑p
j=1 Eval(j,Kj , x) = f(x)

As an example of how the DPF is useful for the
PIR setting, assume we have p = 2 servers, each with
a replicated copy of the database X. When retrieving
an item X[i], the client generates DPF.Gen(1λ, f) →
(K1,K2), where f(x) if the point function f(x) = 1 if
x = i, f(x) = 0 otherwise. After receiving the key Kj ,
server j evaluates the key at every index and sends back
the response

∑N
m=1 Eval(j,Kj ,m) · X[m] to the client.

Adding the responses together allows the client to re-
cover

∑N
m=1(Eval(1,K1,m) + Eval(2,K2,m)) · X[m] =∑N

m=1 f(m) ·X[m] = X[i] as desired.

2.4. Maximum Distance Separable (MDS) Codes

A [p, k]-MDS code encodes k symbols of F into p
symbols of F, such that the original k symbols can be
recovered even if some of the p symbols are erased or
corrupted. The most common type of MDS code is the Reed-
Solomon code [39], which interprets the k data symbols as
coefficients of a (k − 1)-degree polynomial, and encodes
data by evaluating this polynomial at p distinct points in
F. Alternatively, a [p, k] Reed-Solomon code (or any other
linear MDS code) can be described through a generator
matrix G ∈ Fk×p that encodes m ∈ Fk as mG, and has the
property that the submatrix formed by any k columns of G
is invertible. Several efficient algorithms exist for decoding
Reed-Solomon codes [39].

For our schemes, we apply erasure codes to the un-
encoded files in two different ways - within each item,
or across items. When erasure-coding within each item,
each item f is split into k parts f = f1, . . . , fk and the
generator matrix is applied to get each erasure-coded item.
For example, for p = 3, k = 2, the 3 erasure coded items are
f1, f1+f2, f1+2f2. When erasure-coding across items, we
shard the original database into k parts X = X1∥ · · · ∥Xk,
where each Xi contains N

k items. We can then apply the
generator matrix of the [p, k]-MDS code to these shards
to get the contents of each of the p servers. As a con-
crete example, consider a [3, 2]-MDS code applied to a
database X = X1∥X2. The encoded databases would then
be X1 = X1,X2 = X2,X3 = X1 ⊕X2.

3. Threat Model and Security Guarantees

3.1. Fault-tolerant DPF definitions

At a high level, our security definition guarantees that a
static adversary who compromises no more than t out of p
parties will not learn anything about the secret query index i.
This generalizes the security notion than the ones presented
in [11], [12], allowing us to design robust querying schemes
that will be presented in the following sections.

Definition 3.1 (Point Function). For α ∈ {0, 1}n, β ∈
{0, 1}m, the point function fα,β : {0, 1}n → {0, 1}m is
defined such that f(α) = β, and f(α′) = 0 for all α′ ̸= α.

Definition 3.2 (Fault-tolerant DPF:Syntax). A (p, t, r)-
robust distributed point function is a tuple of algorithms
(DPF.Gen,DPF.Eval,DPF.Rec):
• DPF.Gen(1λ, α, β)→ (K1, . . . ,Kp) which on input 1λ

(security parameter) and parameters of point function
fα,β : {0, 1}n → {0, 1}m outputs a p-tuple of keys.

• DPF.Eval(i,Ki, x) → yi, which on input i ∈ [p]
(party index), Ki (key corresponding to party i), and
x ∈ {0, 1}n, outputs a group element yi ∈ {0, 1}m

• DPF.Rec((i1, y1), . . . , (it′ , yt′))→ res, which on input
of t′ ≥ p−r tuples i (party index) and yi (party output
share), is able to recover the desired value res

– DPF.Gen(1λ, α, β)→ (K1, . . . ,Kp)

– DPF.Eval(i,Ki, x)→ yi
– DPF.Rec((i1, y1), . . . , (it′ , yt′))→ res

Definition 3.3 (Fault-tolerant DPF:Security). Let F be a
function family and let Leak be a function specifying the
allowable leakage for a function f ∈ F . A (p, t, r)-robust
DPF is a tuple of algorithms (Gen,Eval,Rec) that satisfies
the following requirements:
• Correctness: For all point functions fα,β ∈ F describ-

ing fα,β : {0, 1}n → {0, 1}m and for all x ∈ {0, 1}n, if
(K1, . . . ,Km)← Gen(1λ, α, β), for all subsets S ⊂ [p]
such that |S| ≥ p− r, then P[Rec({(i,Eval(i,Ki, x)) :
i ∈ S}) = f(x)] = 1.

• Secrecy: For all sets of corrupted parties C ⊂ [p] of
size ≤ t, there exists a PPT algorithm Sim such that
for all functions f ∈ F , the outputs of the following
experiments Real and Ideal are indistinguishable:
– Real(1λ, α, β) : (K1, . . . ,Km)← Gen(1λ, α, β)
– Ideal(1λ) : Output Sim(1λ, Leak(f))

3.2. Fault-tolerant PIR definitions

We generalize prior multi-server PIR definitions to a
threshold version, where the index remains hidden even
when t out of p servers are corrupted. In exchange, our
definition achieves correctness even when r of the servers
are non-responsive and b servers are Byzantine, where r and
b are pre-determined.

Definition 3.4 (Fault-tolerant PIR: Syntax). A (p, t, r, b)-
robust coded PIR protocol P is a tuple of algorithms
(PIR.Encode,PIR.Query,PIR.Eval,PIR.Rec):
• PIR.Encode(X) → (X1,X2, . . . ,Xp), which on input

of an unencoded database X, outputs p erasure coded
databases X1, . . . ,Xp.

• PIR.Query(p, t,X, α) → (σ1, . . . , σp), which on input
number of parties p, security threshold t, and index in
the original DB α, outputs query vectors (σ1, . . . , σp).

• PIR.Eval(j, σj ,Xj)→ rj , which for party index j and
their corresponding encoded database and query vector,
outputs a response rj .

• PIR.Rec((j1, rj1), . . . , (jt′ , rjt′)) → X[i], which on
input of t′ ≥ p − r tuples j (party index), rj (party
output), is able to recover the value X[i].

We wish our protocols to satisfy the following notions of
correctness and security. Note that our correctness definition
guarantees that the output is correct even in the case where
all of the parties are not behaving as expected.

Definition 3.5 (Fault-tolerant PIR: Security).
• Correctness For all databases X and set of responses
res = {(j, rj)}, |res| ≥ p−r, if for at most b responses
rj ̸= Eval(j, σj , Sj)), then:

P
[

(S1,...,Sp)←Encode(X)
(σ1,...,σp)←Query(p,X,i)
Rec({(j,rj)∈res})=X[i]

]
= 1

• Secrecy For all subsets of corrupted parties C ⊂ [p] of
size ≤ t, there exists a PPT algorithm Sim such that for

all databases X , |X| = N , the outputs of the following
experiments are computationally indistinguishable:
– Real(1λ, p,X, i) : (σ1, . . . , σp)←Query(1λ, p,X, i)
– Ideal(1λ) : Output Sim(1λ, p,N)

4. Fault Tolerant DPF Schemes

In this section, we present three new fault-tolerant DPF
constructions. Existing DPF designs ([11], [12], [27]) are
not robust to failures because all servers need to respond in
order to reconstruct the result. However, our three schemes
are designed to be robust to non-responsive (r) failures.

4.1. Multi-server DPF with no collusion

We first present our first fault-tolerant, tree-based DPF
scheme based on [12] with collusion threshold t = 1. Recall
that the goal during the DPF.Gen phase in [12] is to design
keys that represent secret shares of a vector of size N = 2n

with the value β at the special index α, such as r⃗ and
r⃗ + β · e⃗α. Each party’s DPF key is a binary tree of depth
logN , where the root node of the tree is a random seed of
length λ. It is then repeatedly input into a length-doubling
pseudorandom generator (PRG) to achieve a GGM-style
pseudorandom function (PRF) [29]. Each leaf value is the
output of the evaluation path corresponding to an input i.
In order to transform this into a distributed point function,
Boyle et al. construct mechanisms to achieve the following
invariants. Each node has a label, which consists a seed
(similar to the GGM tree) and an extra control bit. The
α input corresponds to a special evaluation path. Outside
the evaluation path, the labels on the two tree are identical.
Since a PRG will evaluate identical seeds to the same value,
two equal roots will cause their entire subtrees to evaluate
to be the same. On the special evaluation path, however,
the seeds are indistinguishable from random, and the two
control bits are different. The control bits decide whether
correction words CWl is applied to each node, and will
only be applied if the node is on the special path. There is a
unique correction word CWl per level of the tree, which is
used to trigger nodes off the special path to become identical
with the same control bits, and those in the special path to
become pseudorandom with different control bits.

To extend this to the multi-server setting where p > 2,
our goal is to extend the above construction in order to
design p logarithmic-sized keys that represent the linear
sized vectors r⃗, r⃗+β ·e⃗i, · · · , r⃗+(p−1)β ·e⃗i. Note that any 2
out of p of these vectors is sufficient to recover the value β.
Our key insight is that, under the assumption of no collusion,
it is possible to maintain the invariant across more than two
parties by replicating one of the control bits across more
servers. In order to extend to p parties with potential failures
of up to p− 2 (this is the worst possible situation in which
our scheme can still reconstruct the result), we additionally
need to make use of p−1 control bits for each party, as well
as p−1 corresponding correction words. Each set of control
bits has following invariant: the ith control bits are the same

K0 K1 K2

= =

̸= ̸=

̸=

Figure 1: DPF Tree construction. The grey lines represent
equal values across all 3 keys, while the pink line represents
the special path. Correction words are applied at each node.

across all parties for non-special nodes; for special nodes,
they should XOR to 1 for each pair of (Pi, Pj) servers
such that i ̸= j. Essentially, the ith control bits (and their
corresponding correction words) are able to tolerate any p−2
failures, conditioned on the fact that server i does not fail.
Therefore, given p− 1 unique control bit/correct word sets,
we can recover from up to any p− 2 failures. We construct
each of our p− 1 correction words using the same method
as Boyle et al. between key 0 and key i. At the last level of
the tree, all non-special leaves will hold the same seed and
control bits, while the special index will hold random seeds
and control bits maintaining the invariant discussed above.
We refer the reader to Figure 1, which demonstrates the
invariant among each of the p keys. The pink line represents
the special path, where each of the seeds are random to the
server. As the server evaluates down the tree, the nodes off
the special path are corrected such that they are all equal to
each other. We present the full algorithm in Algorithm 1.

4.2. Multi-Server DPF using Covering Designs

Our second construction utilizes a key distribution
scheme such as RSS to design a multi-server DPF. This
allows us to transform a non-fault tolerant (q, q − 1)-multi-
server DPF (such as the one in [10]) into a fault tolerant
version by replicating the DPF keys across multiple servers.
We refer the reader to [10] for the specifics of their (q, q−1)-
multi-server DPF construction, but at a high level, their
DPF keys consists of two parts:

√
N · 2q−1 seeds and 2q−1

correction words. This means that the size of the key is
sublinear in the size of the database, but exponential with
the number of keys q.

To convert this non-robust scheme into a fault tolerant
version, we increase the number of parties that receive each
key. In this way, if a party fails to respond, then we can
still retrieve the value associated with that key from another
party. In particular, in our base scheme, the client runs the
DPF.Gen phase of this protocol to generate q =

(
p
t

)
keys

K1, · · · ,Kq and distribute them to the servers according to
RSS, as described in Section 2.2. The expansions of the
individual q keys r⃗1, · · · , r⃗q satisfy

∑q
i=1 r⃗i = e⃗α.

During evaluation, each server sends back one response
for each key it receives. If the client queries enough parties
to cover all q keys, then she can use the result to reconstruct
her desired result. Any subset of t parties will not have
access to one of the DPF keys due to the security of RSS.

Algorithm 1 Fault-tolerant DPF scheme with no collusion

DPF.Gen(1λ, α, β)→ (K0, . . . ,Kp−1):
1: Parse α = α1∥α2∥ . . . ∥αn ∈ {0, 1}n
2: Sample random seeds s

(0)
0 , . . . , s

(0)
p−1 ← {0, 1}λ

3: for i = 0, . . . , p− 1 and j = 1, . . . , p− 1 do
4: Set t(0)i,j = 1 if i = j, 0 otherwise.

5: for i = 1, . . . , n do
6: for j = 0, . . . , p− 1 do
7: sLj ∥{tLj,k}p−1k=1∥sRj ∥{tRj,k}

p−1
k=1 ← G(s

(i−1)
j)

8: (Keep, Lose)←
{
(L,R), if αi = 0

(R,L), if αi = 1

9: for k = 1, . . . , p− 1 do
10: sCW [k] ← sLose0 ⊕ sLosek
11: for m = 1, . . . , p− 1 do

12: tLCW [k],m←
{
tL0,m ⊕ tLk,m ⊕ αi ⊕ 1, if k = m

tL0,m ⊕ tLk,m, otherwise

13: tRCW [k],m ←
{
tR0,m ⊕ tRk,m ⊕ αi, if k = m

tR0,m ⊕ tRk,m otherwise

14: CW[k](i)←sCW[k]∥{tLCW[k],m}
p−1
m=1∥{tRCW[k],m}

p−1
m=1

15: CW (i) ← {CW [k](i)}p−1k=1
16: for b = 0, . . . , p− 1 do
17: s

(i)
b ← sKeepb

⊕p−1
k=1 t

(i−1)
b,k · sCW [k]

18: t
(i)
b,m←tKeepb,m

⊕p−1
k=1 t

(i−1)
b,k ·tKeepCWk,m

for m=1, . . . , p−1
19: for k = 1, . . . , p− 1 do
20: CW [k](n+1)←(−1)t

(n)
k,k [kβ − Conv(s(n)0) +

Conv(s(n)k)]

21: CW (n+1) ← {CW [k](n+1)}p−1k=1

22: Kj ← s
(0)
j ∥CW (1)∥ . . . ∥CW (n+1) for j = 0, . . . , p− 1

23: return (K0, . . . ,Kp−1)

DPF.Eval(i,Ki, x):
1: Parse x = x1∥ . . . ∥xn

2: For j = 1, . . . , p− 1, let t(0)j = 1 if j = i, 0 otherwise.
3: Parse Ki = s(0)∥CW (1)∥ . . . ∥CW (n+1)

4: for j = 1, . . . , n do
5: Parse CW (j) = {CW [k]}p−1k=1

6: τ (j) ← G(s(j−1))
⊕p−1

k=1 t
(j−1)
k · CW [k]

7: Parse τ (j) = sL∥{tLk }p−1k=1∥sR∥{tRk }
p−1
k=1

8: if xj = 0 then s(j) ← sL, {t(j)k }
p−1
k=1 ← {tLk }

p−1
k=1

9: else s(j) ← sR, {t(j)k }
p−1
k=1 ← {tRk }

p−1
k=1

10: Parse CW (n+1) = {CW [k]}p−1k=1

11: return Conv(s(n)) +
∑p−1

k=1 t
(n)
k · CW [k]

DPF.Rec((i1, y1), · · · , (it, yt′)):
1: return IP((i1, y1), · · · , (it, yt′))

Reducing key size with covering designs
One big drawback to RSS is its high communication

cost. Directly using RSS requires that each server receive
O(pt) keys per query, where each key is of size O(2(

p
t)
√
N).

This quickly becomes prohibitively expensive since the
cost grows exponentially in the number of keys generated.
We therefore introduce an optimization using covering de-
signs [30], which were previously used in the context of
secure computation [7]. In our setting, we can use covering
designs to reduce the number of total keys generated, which
also reduces the concrete key size for each party.

A (p,m, t)−covering design is a collection of q subsets
A1, . . . , Aq, each of size m, such that for any subset T ⊂ [p]
of size t, there exists an Ai such that T ⊆ Ai. The goal
of covering designs is to minimize q, the total number
of subsets, and we let C(p,m, t) to denote the smallest
possible q achieved in these covering designs. Our insight is
to increase the covering size m and exploit a gap between
m and the collusion threshold t to allow each server to
receive fewer keys per query. While C(p, t, t) =

(
p
t

)
is

precisely the setting of RSS, using m > t gives way for
C(p′,m, t) <

(
p
t

)
. For example, for p = 6, t = 2, RSS

requires generating q =
(
5
2

)
= 15 keys, while using a

(7, 3, 2)-covering design only requires q = 7.
Covering designs can thus be used to improve communi-

cation efficiency of RSS. Given a (p,m, t)-covering design
that achieves the minimum q = C(p,m, t), the client runs
the DPF.Gen protocol to create q key shares and distribute
each Ki to [p]\Ai. The collusion threshold is t since a subset
T of this size must be contained in some set Aj , and thus
must not hold Kj . One potential downside is that a closed
form for covering designs for arbitrary p,m, t is still an
open problem, and deterministic algorithms for generating
covering designs are not known. Fortunately, the number of
subsets q only needs to be computed once for fixed p,m, t.
The best known covering designs also exist for the range of
values p,m, t that we consider in this paper.

4.3. Information-theoretic multi-server DPF

Our final construction is an information-theoretic DPF
that uses Shamir secret sharing to hide the special value α.
The full protocol is presented in Algorithm 2.

A straw man approach is to use the Shamir secret sharing
scheme described in 2.2 to directly share each element of the
α’th standard basis vector e⃗α, and distribute these sharings
to the p servers. Each Shamir share encodes either 0 or 1,
and 1 is only encoded in the α-th index. During evaluation,
each server executes a dot product between their Shamir
shares and the corresponding data items in the replicated
database. The result is a Shamir share of X[α].

We can further compress the query by considering the
database a d-dimensional hypercube. Each index m ∈ [N],
we treat it as a d-dimensional tuple m = (m1, . . . ,md),
mj ∈ [N

1
d]. Letting our special index be α = (α1, . . . , αd),

we can then use the (p, t)-secret sharing scheme to share
each of the dimensions separately, where each dimension

Algorithm 2 Shamir Based Multi-Party DPF O(n
1
d)

Notation: d represents the pre-determined branching factor
of the Shamir DPF.
DPF.Gen(1λ, α, β):

1: Let α = α1|| · · · ||αd

2: for i = 1, . . . , d do
3: for k = 1, . . . , n

1
d do

4: If k = αi sample deg-t ri[k](x), ri[k](0) = 1.
5: Else, samp. deg t func. ri[k](x), ri[k](0) = 0.

6: Set σj = {ri[k](j)}N
1
d

k=1, j = 1, · · · , p
7: Set Kj = σ1|| · · · ||σd

8: return (K1, . . . ,Kp)

DPF.Eval(j,Kj , x):
1: Parse Kj = σ1|| · · · ||σd

2: Parse σi = {ri[k](j)}N
1
d

k=1 for i = 1, · · · , d
3: Let x = x1||, ..., ||xd

4: Initialize yj = 1.
5: for l = 1, · · · , d do
6: Update Al =

∏
l′∈[d],l′ ̸=l rl′ [xl′](j)

7: Set yj = yj · rl[xl](j)

8: return resj = A1|| · · · ||Ad||yj
DPF.Rec((i1, res1), . . . , (it′ , rest′)):

1: Parse resj = A1,j ||...||Ad,j ||yj for j = 1, · · · , t′
2: Compute value y′j from ij , (A1,j ||...||Ad,j), and sam-

pled random functions from DPF.Gen
3: return Hermite Interpolation of the 2t′ points

(i1, y1), · · · , (it′ , yt′), (i1, y′1), · · · , (it′ , y′t′)

is a O(N
1
d)-vector of all 0’s with a 1 in the αj’th po-

sition. We denote the i’th Shamir share polynomial in
dimension k ∈ [d] as rk[mi](x). In order to reconstruct
each evaluation index, the server can take the product
of the corresponding d Shamir sharings. For an index
m ∈ [N] = (m1, . . . ,md), the Shamir shared index
is r1[m1](x) × r1[m2](x) . . . × r1[md](x). To query a
database X , we simply apply a dot product between the
Shamir responses and each individual database item X[i]:∑N

m=1(r1[m1](x)r2[m2](x) . . . rd[md](x)) ·X[m].
This response is a sharing of a degree dt polynomial

that encodes 1 if and only if x is the secret index, and
0 otherwise. However, the number of servers needs to be
greater than dt + 1, compared to t + 1 for the strawman
scheme.
Reducing Number of Servers with Hermite Interpolation
A major disadvantage of the above scheme is the high
number of servers needed. The number of servers required
is at least dt + 1, where d is the branching factor and t is
the collusion threshold. In this section, we leverage Hermite
interpolation to reduce the number of necessary servers.

Hermite interpolation [52], which generalizes Lagrange
interpolation, computes a function of mn degree using n
evaluations as well as the m− 1 first derivatives.

In our setting, we observe that it is possible to use

Hermite interpolation to reduce the number of servers re-
quired to interpolate the fault-tolerant DPF. Particularly,
we additionally require each server to calculate auxiliary
information for the client to compute additional deriva-
tives of the response function client side. Specifically, for
res(x) =

∑N
m=1(r1[m1](x) · · · rd[md](x)) ·X[m], the client

is able to reconstruct res(x) with only dt+1
2 servers, if it can

also compute the corresponding first order derivatives.
We now show how to calculate the value res′(x).

First note that the j’th server has access to the
values r1[m1](j), . . . , rd[md](j) for all m. These
are the evaluation points that correspond to the
Shamir polynomials. By the chain rule, we have that
res′(j) =

∑N
m=1(r1[m1]

′(j) · · · rd[md](j)) · X[m] + · · · +∑N
m=1(r1[m1](j) · · · rd[md]

′(j)) ·X[m].
Consider the first term

∑N
m=1(r1[m1]

′(j) · · ·
rd[md](j)) · X[m]. It is insecure for the server to
actually receive the value r′m1

(j) as this gives a
collusion of t servers enough information to recover
rm1(j), breaking the security of the Shamir DPF.
Because of this, we instead calculate intermediate values
that allows the client to calculate this sum herself. In
particular, since m1 ∈ [N

1
d], we can calculate the vector

{∑m|m1=k(r2[m2](j) · · · rd[md](j)) · X[m]}
k∈[N

1
d]

. The
same vector can be similarly calculated for all of the terms,
allowing the client to calculate the derivative locally.

5. Communication-efficient PIR over erasure
coded databases

5.1. Erasure code PIR building block

We first present a state-of-the-art PIR protocol over
erasure coded storage [49] that uses linear-sized queries.
We then explain how to adapt our DPF constructions to
compress the query size to be sublinear while still being
compatible over erasure coded storage. Note that we de-
scribe a particular version of their scheme in which the
client only needs to send one linear query per server in
order to download the entire item, at the cost of additional
servers. It is also possible to generalize this scheme so that
the protocol requires fewer servers at the cost of additional
linear queries/ per-server computation. We refer the reader
to [49] for additional details.
Encoding Each item in the database is erasure coded using
a [p, k]-MDS code. Concretely, the encoded database stored
at server j is Xj = {X[i]1+X[i]2 ·j+· · ·+X[i]k ·jk−1}Ni=1.
Query Assume that the client is querying for the desired
index α. For each server, the client prepares a linear sized
query. Specifically, they prepare a linear sized vector of
secret shares ⃗q(x) = [g1(x), . . . , gN (x)]. Given random
ri,j

$←− F, each of the gi(x) is defined:

gi(x) =

{
ri,1 + · · ·+ ri,tx

t−1 + xt−1+k i = α

ri,1 + · · ·+ ri,tx
t−1 o/w

The client then sends this vector of shares ⃗q(j) =
[g1(j), . . . , gN (j)] to each server j.
Evaluation During evaluation, each server simply returns
the dot product between its erasure coded database and the
linear query vector it has received. Concretely, the response
from server j is the response resj . Note that the dot product
is equal to the following polynomial evaluated at j:

h(j) =

N∑
i′=1,i′ ̸=α

gi′(j) · (X[i′]1 + · · ·+X[i′]k · jk−1)

+ gα(j) · (X[α]1 + · · ·+X[α]k · jk−1)
= r′(j) +X[α]1 · jt−1+k + · · ·+X[α]k · jt+2k−2︸ ︷︷ ︸

s(j)

where r′(x) is a random degree t + k − 2 degree
polynomial.
Reconstruction Note that given the at least 2k+ t−1 (hon-
est) responses, the client can locally interpolate the polyno-
mial h(x). From this polynomial, the first t+ k coefficients
are random and can be discarded. However, the last k coeffi-
cients are precisely the k shards X[α]1, . . . , X[α]k = X[α],
which is the desired item.

In summary, in the above scheme, the client prepares
2k + t− 1 linear-sized queries, and each server performs a
linear scan over a database of size N

k .

5.2. Fault-tolerant PIR protocol 1—no collusion

In this section, we design a new fault-tolerant PIR proto-
col with communication overhead of O(logN). We achieve
this by composing our fault-tolerant DPF scheme described
in Section 4.1 and the building block from [49] described
in Section 5.1. Naively combining these protocols does not
work as the query structure required by [49] is different
from what Section 4.1 requires.

We discuss how to adapt our DPF scheme from Sec-
tion 4.1 with a simple insight. Specifically, Recall that
our DPF construction gives us a technique such that, on
an input β, outputs logarithmic sized keys that are com-
pressed representations of the linear-sized vectors r⃗, r⃗ +
β · e⃗i, . . . , r⃗ + (p − 1)β · e⃗i. We observe that rather than
taking as input only a single value of β in the final cor-
rection word, it is actually possible to directly input p − 1
chosen values val1, . . . , valp−1 in the final correction word
of the protocol (see line 20 of Algorithm 1). This is due
to the fact that the security of the scheme is independent
of these chosen values, which are eventually masked by
the randomness of the independently generated seed. This
adaptation of our DPF scheme allows us to create DPF keys
that represent sublinear sized representations of the vectors
r⃗, r⃗ + val1 · e⃗i, . . . , r⃗ + valp−1 · e⃗i for client-chosen values
val1, . . . , valp−1.

Using this modified functionality, we now show how this
can be used to be compatible with the coded PIR protocol
in the following section.

We observe that in the Tajeddine et al. [49] protocol in
the case where t = 1, the linear query sent to the j’th party
is of the form r⃗ + jk · e⃗i, for j ∈ {1, . . . , p}. In the case
of j = 1, this vector is equal to r⃗′ = r⃗ + e⃗i. With this
in mind, choosing the p − 1 values {val1, . . . , valp−1} =
{2m−1, . . . , pm−1} allows us to have p logarithmic-sized
keys that represent a set of p vectors r⃗+e⃗i, r⃗+2m·e⃗i, . . . , r⃗+
pm · e⃗i. These are precisely the query vectors needed for the
Tajeddine et al. protocol in the case t = 1, giving us a way
to compress the size of the queries to be logarithmic. The
full protocol is presented in Algorithm 3.

Algorithm 3 (p, 1, r, b) - Coded PIR Protocol
Notation: Let C be a [p, k]-MDS code with generator G,
where p ≥ t+1+r+2b. We use the DPF.{Gen,Eval,Rec}
algorithms described in Algorithm 1.

PIR.Encode(X):
1: for X[i] ∈ X do
2: Parse X[i] = X[i]1∥ · · · ∥X[i]k
3: Let [fi,1, . . . , fi,p] = [X[i]1, . . . , X[i]k] ·G
4: Let Xj = {fi,j}ni=1
5: return (X1, . . . ,Xp)

PIR.Query(p, t,X, α):
1: Let valj = (j − 1)k − 1 for j = 1, . . . , p− 1
2: (K1, . . . ,Kp)←Gen(1λ, α, {val1, . . . , valp−1})
3: return (K1, . . . ,Kp)

PIR.Eval(j,Kj ,Xj):
1: return resj =

∑n
m=1 Eval(j,Kj ,m) · Xj [m]

PIR.Rec((j1, resj1), · · · , (jt′ , resjt′)):
1: Let h(x)← IP((j1, resj1), · · · , (jt′ , resjt′))
2: Parse X[α]1, . . . , X[α]k from coefficients of h(x) as

described in 5.1.
3: return X[α] = X[α]1, . . . , X[α]k

5.3. Fault-tolerant PIR protocol 2 — Shamir-based
PIR

While the previous PIR protocol is communication-
efficient, it cannot tolerate any collusion. We describe how
to compose the recursive Shamir DPF described in Section
4.3 with Section 5.1 to design a PIR protocol with sublinear
query size and can tolerate server collusion. We describe the
protocol in the case d = 2, which leads to O(

√
N)−sized

keys, but note that the same technique can be directly
extended to any generalized d. We present the generalized
case in Algorithm 4 in the Appendix.

Recall from Section 4.3 that our Shamir DPF keys
are O(

√
N)-length vectors such that when evaluated at an

index i, the server evaluates a (p, 2t)-secret share of 0
or 1, and then utilizes Hermite interpolation such that the
client only requires 2t+1

2 responses to interpolate the result.
Directly combining our DPF scheme with the Tajeddine et
al. coding scheme does not work for multiple reasons. First,

the shares in the Tajeddine et al. protocol are of the form:
g(x) = r1 + r2x + · · · + rtx

t−1 + bxt−1+k where b is
0 or 1. Their shares have a gap of degree k between the
second to last and last terms, which is used to retrieve all
k shards simultaneously. However, our Shamir shares do
not have this same gap, which is required to retrieve the
item. Second, the encoded database stores items of the form
fi(x) = X[i]1+X[i]2·x+· · ·+X[i]k ·xk−1, so taking the dot
product with the encoded database gives us a secret share
of the function

∑N
m=1(r1[m1](x) · r2[m2](x))fm(x). If we

wish to use Hermite interpolation directly on this share, this
would require also knowing the derivative of fm(x), which
cannot be calculated locally based on the information stored
on the server.

To address the first issue, we create secret shares for the
DPF key directly using the function ri′(x) = ri′,1+ri′,2x+
· · ·+ ri′,tx

t−1 + bxt−1+k instead of using standard Shamir
sharing. Note that this is still a (p, t)-secure secret sharing
scheme since these shares would still contain t random
coefficients, so privacy is still maintained. Another property
that this shares with Shamir secret sharing is that the product
of two of these (p, t)-secret shares is additionally still a valid
(p, 2t)-secret share. These two properties allow us to use this
secret sharing scheme directly with our Shamir DPF scheme
described in Section 4.3.

To address the second issue, we additionally require the
server to store the values of f ′i(x) = X[i]2+X[i]3 ·x+· · ·+
(k− 1) ·X[i]k ·xk−2 for all i. This can be easily calculated
during the PIR.Encode phase and stored on each server.
Although this does incur extra storage overhead compared
to the prior work of Tajeddine et al. [49] by 2, we note that
this still represents an overall storage reduction per server
provided that k > 2.

Below we provide a concrete example of the protocol
in the case d = 2, and refer the reader to Algorithm 4 in
the Appendix for more details. For a database X such that
|X| = N , each Server i stores the following 2N values:

Si =

{
{fi(x) = X[i]1 +X[i]2 · x+ · · ·+ ·X[i]k · xk−1}Ni=1

{f ′i(x) = X[i]2 + · · ·+ (k − 1) ·X[i]k · xk−2}Ni=1

When querying for an index α = (α1||α2), such that
α1

√
N + α2 = α, the client prepares a key according to

Algorithm 2. On each Server j, the server now has the
necessary information to compute the following

√
N + 2

values, which are sent to the client:

• val(j) =
∑N

i=1 r1[i1](j)r2[i2](j)fi(j)

• Ai1(j) =
∑√N

i2=1 r2[i2](j)fi1||i2(j) for i1 = 1, . . . ,
√
N

• Bi2(j) =
∑√N

i1=1 r1[i1](j)fi1||i2(j) for i2 = 1, . . . ,
√
N

• val′(j) =
∑N

i=1 r1[i1](j)r2[i2](j)f
′
i(j)

Note that the client now has the values res(j)pj=1 =
val(j)pj=1, and has enough information to locally compute
the values:

res′(j) =
N∑
i=1

r1[i1]
′r2[i2]fi(j) +

N∑
i=1

r1[i1]r2[i2]
′fi(j)

+

N∑
i=1

r1[i1]r2[i2]f
′
i(j)

=

√
N∑

i1=1

r′1[i1](j)Ai1(j) +

√
N∑

i2=1

r′2[i2](j)Bi2(j) + val′(j)

With the 2p values res(j) and res′(j), the client can now
perform Hermite interpolation to recover their desired result.

Algorithm 4 (p, t, r, b) - Shamir Based Robust PIR Protocol
Notation: Let C be a [p, k]-MDS code with generator G
and corresponding matrix G′, where p ≥ dt

2 + k + r + 2b.
We use the DPF.{Gen,Eval,Rec} algorithms described in
Algorithm 2.
PIR.Encode(X):

1: for X[i] ∈ X do
2: Parse X[i] = X[i]1∥ · · · ∥X[i]k
3: Let [fi,1, . . . , fi,p] = [X[i]1, . . . , X[i]k] ·G
4: Let [f ′i,1, . . . , f

′
i,p] = [X[i]1, . . . , X[i]k] ·G′

5: Let Xj = {fi,j}Ni=1∥{f ′i,j}Ni=1

6: return (X1, . . . ,Xp)

PIR.Query(p, t,X, i):
1: (K1, . . . ,Kp)←DPF.Gen(i, 1)
2: return (K1, . . . ,Kp)

PIR.Eval(j,Kj , Sj):
1: Initialize d arrays of size N

1
d , Arr,1 . . . ,Arrd

2: Initialize val = 0, val′ = 0
3: for m = 1, . . . , N do
4: Parse m = m1∥ · · · ∥md

5: A1∥ · · · ∥Ad∥ym ← DPF.Eval(j,Kj ,m)
6: for l = 1, . . . , d do
7: Update Arrl[ml] += Al · fm,j

8: Set val(r) += ym · fm,j

9: Set val′(r) += ym · f ′m,j

10: Set resj = Arr1∥ · · · ∥Arrd∥val∥val′
11: return resj

PIR.Rec((j1, res1), · · · , (jt′ , rest′)):
1: Parse resj = A1,j∥ · · · ∥Ad,j∥yj for j = 1, . . . , t′.
2: Compute value y′j from ij , (A1,j∥ · · · ∥Ad,j), and sam-

pled random functions from DPF.Gen
3: Recover f(x) from Hermite Interpolation of the 2t′

points (i1, y1), . . . , (it′ , yt′), (i1, y
′
1), . . . , (it′ , y

′
t′)

4: Parse X[α]1, . . . , X[α]k from coefficients of h(x) as
described in 5.1.

5: return X[α] = X[α]1, . . . , X[α]k

5.4. Fault-tolerant PIR protocol 3 — leveraging
covering design-based DPF

For our final scheme, we observe that rather than erasure
coding the database at the item-level, erasure coding at the
database level allows us to utilize our querying scheme
effectively. We first present a building block that will be
helpful in our construction. In particular, we utilize the
following building block: given any linear vector v⃗ and
p servers that store [p, k]-MDS encoded data X1, . . . ,Xp,
where the database was encoded across items, then given
any k honest responses [ri1 , . . . , rik] = [v⃗ ·Xi1 , . . . , v⃗ ·Xik],
it is always possible to recover the value v⃗ ·Xδ for any δ.

If we assume we receive k honest responses from servers
indexed by the indices in the set I = {i1, . . . , ik}, we can
then write the k responses from these servers as

[ri1 , . . . , rik] = [v⃗ · (
k∑

j=1

XjGi1,j), . . . , v⃗ · (
k∑

j=1

XjGik,j)]

(1)
= [v⃗ ·X1, . . . , v⃗ ·Xk] ·G[I] (2)

where G[I] corresponds to the k-by-k matrix representing
the k columns of G indexed by I . By the property of MDS
codes, there exists an inverse to this square matrix, which we
denote G[I]−1. Multiplying this inverse to each side gives
us

[ri1 , . . . , rik] ·G[I]−1 = [v⃗ ·X1, . . . , v⃗ ·Xk]

We use v⃗ ·Xδ ← Retrieve(v⃗, I, {ri1 , . . . , rik}) to represent
this building block above.

We now use the above building block in order to con-
struct our final coded PIR scheme. Assume that the database
is encoded across the p parties as encoded databases
X1, . . . ,Xp, and without loss of generality, assume that our
desired item is located at index α ∈ X1.

The client first generates q keys (K1, . . . ,Kq) ←
DPF.Gen(α, 1), where q is the number of keys required
by the C(p,m, t) covering design in Section 4.2. We then
distribute the q keys to the p parties according to the
covering design (or RSS). The security property of this key
distribution protocol guarantees no collusion of t servers
learns anything about the special index.

For each key that the server received, the server
can evaluate the key at every index and perform a dot
product with the expanded key and the database con-
tents. Concretely, each server sends back the response∑N

m=1 DPF.Eval(j,K,m)Xj [m] for each key they received
during the distribution phase.

During the decoding phase, since each key Ki, i ∈ [q]
was received by p − m parties (which the construction of
covering design guarantees), the client can recover the value∑N

j=1 DPF.Eval(Ki, j)X1[j] by the Retrieve building block
described above (provided that p−m ≥ k.) By the properties
of DPF, taking the sum of these q intermediary values allows
the client to retrieve the value X1[α] as desired. The full
algorithm is discussed in Algorithm 5.

Algorithm 5 (p, t, r, b)-Covering Design Based Coded
Fault-tolerant PIR Protocol
Notation: Let C be a [p, k]-MDS code with generator G,
where p ≥ m+ k+ r+2b. Let RSS.Share be the algorithm
described in Section 2.2, Retrieve be the building block
described in Section 5.4, and A1, · · · , Ak as the enumer-
ation of the q covering sets of C(p,m, t) We make black
box use of the multi-party DPF algorithm DPF.{Gen,Eval}
described in [10].

PIR.Encode(X):
1: Partition X into k equal-sized matrices X =

X1∥ · · · ∥Xk.
2: Let [X1, . . . ,Xp] = [X1, . . . ,Xk] ·G
3: return (X1, . . . ,Xp)

PIR.Query(p, t,X, i):
1: Let q =

(
p

p−t
)

2: Compute (K1, . . . ,Kq)← DPF.Gen(1λ, i, 1)
3: Compute (σ1, . . . , σp)← RSS.Share(K1, . . . ,Kq)
4: return (σ1, . . . , σp)

PIR.Eval(j, σj ,Xj):
1: return rj = {

∑n
i=1 DPF.Eval(j,K, i) · Xj [i] | K ∈ σj}

PIR.Rec((j1, rj1), . . . , (jt′ , rjt′)):
1: Let X[i] ∈ Xδ

2: for m = 1, . . . , q do
3: for ind in Am do
4: Let resind = Km · Sind ∈ rind
5: Km ·Xδ ← Retrieve(Km, i, Am, {resind|ind ∈ Am})
6: return

∑q
m=1Km ·Xδ = X[i]

5.5. Extending to Malicious Security

While prior work [17] leveraged cryptographic tech-
niques such as MACs to check the integrity of server
responses, our approach allows the client to detect errors
in the servers’ responses directly, letting us avoid the extra
MAC storage as well as the need for a client key.

First note that our use of Reed-Solomon codes guar-
antees each of the responses in all of the above protocols
are evaluations of some degree γ function h(x) at a party
index. This means assuming γ + 1 (honest) responses, the
client can simply use standard interpolation to retrieve their
desired value, whether that is an item shard in Algorithm 3
or Algorithm 4, or the value v · Xδ in Algorithm 5. This
algebraic structure of the response values allows us to extend
standard coding techniques to account for non-responsive
(r) and malicious (b) servers. To do so, we leverage known
techniques from information theory that allows us to ef-
ficiently correct errors, specifically the Berlekamp-Welch
algorithm [8] for error correction. We refer the reader to [8]
for details, but at a high level, Berlekamp-Welch provides
a way for the client to interpolate a degree γ function h(x)
with γ+2b+1 responses, where at most b of the responses
are Byzantine. We emphasize this number is optimal due to

properties of MDS codes.
In addition, to account for r non-responsive servers, we

can simply add an extra r servers to the system, which
provides the redundancy required to guarantee the client can
still recover her result. Specifically, if there are γ+r+2b+1
servers, r of these can be non-responsive which still guar-
antees the γ + 2b+ 1 responses need for interpolation.

6. Implementation

We implement our above protocols in ∼5, 000 lines of
C++ and Go. We utilize the OpenSSL library [40] for cryp-
tographic functions, and AES for PRF evaluations. Our tree-
based and multiparty DPF implementations closely follow
the implementations provided in DORY [17] and Splin-
ter [50], respectively. For the erasure coding and polynomial
evaluations, we use GF(28) as the underlying field. This is
the standard field for erasure code implementations because
additions are equivalent to XORs and multiplications are
just table lookups in a 256 by 256 table. We use the lookup
table provided in Intel’s ISA-L erasure-coding library [32],
as well as the associated functions. ISA-L is the standard
tool used for implementing erasure codes in data storage
systems [41], [47].

Optimized DPF Tree Implementation Naively implement-
ing the tree-based Robust DPF from Section 4.1 requires k
separate DPFs for each query, one to retrieve each of the
k shards. This leads to a query of size O(kp logN) and
kN AES evaluations per PIR query. We instead implement
an optimized DPF, with key length of O(p logN) + O(k)
and only requires N AES evaluations. Our insight is that
we can pack the k correction words in each leaf position
together, and only use one seed per leaf to hide the contents
of the packed correction words. This leads us to only having
to expand the entire tree once per evaluation, which is the
main bottleneck of the DPF Tree protocol.

7. Evaluation

The evaluation aims to answer the following questions:

• What are the theoretic storage, communication, and
compute costs of our erasure coded PIR schemes com-
pared to prior robust PIR baselines? (Section 7.1)

• How does our protocols compare to prior robust PIR
baselines? (Section 7.2)

• How does erasure-coding improve the performance of
PIR compared to replicated storage? (Section 7.2)

• What is the cost of protecting against malicious
servers? (Section 7.2)

• How do the protocols’ performance change as we vary
parameters? (Section 7.3)

Table 3 provides a summary of all of the parameters in
our protocols, which we refer to throughout our evaluation.

Scheme Storage Rate No. Servers Required Key Length Response Length # AES Evals # Mults
Devet et al. [19] 1 p ≥ t+ 1 + r + 2b O(N) O(1) 0 N

Tajeddine et al. [49] 1/k p ≥ t+ k + r + 2b O(N) O(1) 0 N
k

Woodruff et al. [52] 1 p ≥ dt+ 1 + r + 2b O(N
1
d) O(1) 0 O(

√
N) ·N

Tree-Based PIR (Algorithm 3) 1/k p ≥ 1 + k + r + 2b O(p logN) O(1) N
16k

N
k

Shamir Based PIR (Algorithm 4) 2/k p ≥ dt
2

+ k + r + 2b O(N
1
d) O(N

1
d) 0 5N

k

CD-Based PIR (Algorithm 5) 1/k p ≥ m+ k + r + 2b O(2q
√
N) O(q)

√
N
k

· 2q q(p−m)
p

∗ N
k

TABLE 2: Theoretic Performance of Coded PIR protocols, where q <
(
p
t

)
is the size of the (p,m, t)-covering design. In

our evaluation, we set d = 2 for the WY and Shamir schemes. The amount of computation is the amount performed on
each server per query.

Parameter Meaning
N No. items in database
p No. servers
r No. stragglers/fail-stop servers
b No. Byzantine servers
t Collusion threshold
k Reconstruction threshold of MDS code

TABLE 3: Parameters used in our Coded PIR protocols

Setup We evaluate our protocols on AWS r5.4xlarge in-
stances with 16 cores and 128GB of memory. All server
computation is parallelized across the 16 virtual cores on
each machine. We place the client machine on the west
coast, and the rest on the east coast. All communication
is performed over TLS on a 2Gbps network latency. All
results are computed as the average over ten trials.
Baselines In our evaluation we consider the following robust
baseline schemes and compare them to our three protocols:
Devet et al. (DGH): An implementation of a robust PIR
scheme over replicated storage [19], [28]. This scheme
achieves robustness, but utilizes replicated storage and
linear-sized queries.
Tajeddine et al. (TGK+): An implementation of the linear
querying scheme described in Section 5.1 [49]. This scheme
achieves robustness with erasure-coded storage, but utilizes
linear-sized queries.
Woodruff et al. (WY): An implementation of the PIR
scheme described in [52]. This scheme achieves robustness
and sublinear-sized queries, but utilizes replicated storage.

7.1. Theoretic Performance

Table 2 shows the theoretical performance of the base-
lines and our three protocols for the three main performance
metrics that we consider in this paper: storage, communica-
tion, and computation.
Storage We evaluate the storage based on the schemes’ per-
server storage rate and the total storage across all servers.
The storage rate is the ratio between the storage on the
erasure-coded server and the original, unencoded server. For
example, the storage rate of a replicated scheme is 1.

Each of our schemes achieves a per-server storage rate
of less than 1 because of our use of erasure coding. Our tree
and covering design schemes storage rates of 1

k , while for
the Shamir based PIR scheme, the storage rate is 2

k , which
means that our storage overhead is concretely smaller than
replicated storage for k > 2.

While the storage reduction comes at a cost of addi-
tional servers (discussed below), the concrete total storage
compared to a replicated storage baseline is also smaller.
This is seen in the following section when comparing the
total storage between the DGH and WY baselines and our
schemes. This stems from the fact that our use of MDS
codes allows us to provide robustness with less redundancy
than merely replicating across multiple servers, allowing us
to provide better per-server and total storage overheads. In
addition, for larger values of k and b, our schemes will
asymptotically have less total storage, because each addi-
tional server added to provide more robustness will have less
storage than adding additional servers in a replicated setup.
Each additional server in the replicated setting increases
total storage by N , while total storage is only increased
by N

k in the erasure-coded setting.
When compared to the TGK+ scheme, however, our

Shamir and covering design schemes do incur larger total
storage overhead. For the CD scheme, this stems from the
fact that covering designs require additional servers in or-
der to achieve better concrete communication.. The Shamir
incurs extra storage from the use of Hermite interpolation.

No. Servers Erasure coded PIR schemes require additional
servers when compared to a replicated baseline. This in-
crease in servers stems from the fact that the number of
servers increase linearly in k, which is not a parameter is
replicated robust PIR schemes.

Communication The communication cost of our schemes
are all sublinear in the number of items, which is asymptot-
ically better than the linear-sized queries required by both
the DGH and TGK+ schemes. The Tree-based PIR scheme
has a O(p logN) query size since it is derived from the two-
party tree-based DPF [10], though at the cost of assuming no
collusion among parties. Asymptotically, the Shamir based
PIR scheme has a communication cost of O(N

1
d) (we set

d = 2 by default), but has a higher response length of
O(N

1
d) compared to other schemes. For the covering design

PIR scheme, the query size is additionally exponential in the
in the number of parties, which is inherent in the use of the
multiparty DPF scheme in [10].

Compared to the WY scheme, we achieve the same or
better asymptotic performance but worse practical key size
due to larger constant factors in our schemes. However, to
achieve this smaller key size, the WY scheme requires a
larger amount of computation on each server compared to

our schemes, which inhibits performance in practice (see
Table 2 in the following section). Because the per-server
compute is often the bottleneck in practice, we find that our
schemes still perform better in our evaluation.
Computation For per-server computation, one can think
of the computation required in two parts: first, the cost of
expanding a sublinear key, and then the cost of performing
a linear scan across the server contents. For example, for
the DGK scheme, which sends a linear query vector to
each server, the server does not require any additionally
computation to expand each vector, but must perform a scan
across a database of size N. The per-server compute is seen
in Table 2. We separate the costs of multiplications (i.e. for
the linear scan) and the AES evaluations.

When comparing the compute costs of our schemes
to the replicated baseline schemes, our schemes have a
lower per-server compute cost as k gets larger. Specifically,
since each of the schemes must perform a linear scan
across the database contents, which is the main computa-
tion bottleneck, erasure coding allows each server to scan
across a smaller sized database, significantly reducing the
computation on each server when compared to a replicated
scheme. Compared to the TGK+ scheme, however, our
schemes do incur a larger per-server compute cost. This is
because their scheme also inherits the benefits of erasure-
coding and additionally does not require any computation to
perform a key expansion. However, note that the linear query
size negatively affects the performance of their scheme in
practice, which is seen in the following section.

Our schemes also achieve asymptotically better total
compute. While this is empirically shown in the following
section, this is because the number of servers only grows
linearly with k, but per-server compute decreases multiplica-
tively in k, as seen in Table 2. Thus, although increasing k
would increase the number of servers required, it would also
decrease the total compute.

7.2. Cost Breakdown

In this section, we present cost breakdowns of the dif-
ferent protocols for two different database configurations
of varying sizes. We run the various protocols under the
parameters k = 4, b = 2 unless otherwise stated. We break
down the end to end latency into four components: upload
time (including the key generation), server compute time,
download time, and the decoding time. We refer the reader
to Table 4 to see the cost breakdown in each of the protocols.
We look at the effects of changing these parameters in the
following section (Section 7.3).
Comparison to Prior Work Baselines As seen in Table 4,
our schemes outperform both the replicated robust PIR
baselines (DGH [19] and WY [52]), as well as the state
of art erasure coded PIR baseline (TGK+ [49]). For a 4GB
sized database, our schemes demonstrate an improvement
of 4.22–9.09× in end to end latency. This improvement
stems from two places. First, when compared to the DGH
and TDK+ schemes, our schemes save in the Upload Time

because these schemes are bottlenecked by their linear key
generation and query upload time. Second, when compared
to the WY scheme, our computation time on each server
is much smaller because of our use of erasure coding.
Although their work is able to achieve key sizes concretely
smaller than ours, this is at the cost of a more expensive
server computation on each server. Because of this, our
schemes are more efficient in practice.

Furthermore, the performance of our protocols are nearly
unaffected even in the presence of Byzantine servers. The
decoding time in the Byzantine setting takes less than 1 ms
for the tree and multi-party schemes, and ∼22 ms for the
Shamir scheme (which must compute the derivative locally
as well as perform the Berlekamp-Welch algorithm).

Although our use of erasure coding comes at the cost of
additional servers when compared to the replicated robust
PIR baselines, we improve on both total storage and total
compute when compared to the replicated baseline. First, the
total storage is still less when compared to the replicated
setting. In the configuration we consider in Table 4, for
example, our schemes use 28–72% less total storage in our
evaluation when compared to the WY scheme, and up to
7–64% when compared to the DGH scheme.

When comparing the total computation of the WY
scheme to our schemes in the 4GB setting, our schemes
have a 2.68–7.30× improvement, even with the additional
servers. This is due to the fact that the WY scheme has a
much more expensive computation phase in their protocol,
and must also scan across a replicated server.

Compared to the DGH and TGK+ scheme, our schemes
incur a modest overhead in total compute. This stems from
the fact that our schemes require per-server computation in
order to expand out the key to a linear vector even before
performing a linear scan, while the prior schemes due not
since the linear vector is sent directly. This leads to a modest
overhead of < 34% and < 50% when compared to the DGH
and TGK+ schemes, respectively. However, since the DGH
scheme operates over replicated storage, further increasing
k would also continually reduce the total compute (since
the number of servers grows linearly in k, but per-server
compute reduces multiplicatively).

In Table 6, we also compare the estimated costs of
running a PIR query in each of the baseline and our schemes
based on AWS cost estimates for compute and communi-
cation. Apart from the Tree scheme (0.6 cents per query)
and the WY scheme (4.3 cents per query), the cost of the
other schemes are similar (1.1 − 1.5 cents per query). The
cost of the schemes are highly correlated with the total
computation of the schemes, (as compute cost is in general
more expensive than communication).

Comparison to Replicated Servers
Table 5 displays the performance of our schemes when

used over both replicated and erasure-coded storage. As
expected, our schemes perform much better over erasure-
coded storage than in their replicated counterpart, exhibiting
a 2.2–4.3× latency improvement.

Again, while erasure coding does require an increased

Database Metric Baselines Our Schemes

DGH TDK+ WY Tree Shamir CD

Number of Servers 7 13 9 12 13 16
Storage Rate 1 0.25 1 0.25 0.5 0.25
Total Storage 7× 3.25× 9× 3× 6.5× 4×

222 × 512B
(2GB)

Key Size 4MB 4MB 2897B 8387B 4kB 340kB
Response Size 512B 512B 512B 512B 525kB 768B
Upload Time 1.11s 1.59s 0.13s 0.13s 0.14s 0.40s

Compute Time 1.56s 0.85s 2.24s 0.38s 1.16s 0.87s
Download Time 0.02s 0.02s 0.02s 0.02s 0.32s 0.02s

Decode Time < 1ms < 1ms 25ms < 1ms 28ms < 1ms
Total Time 2.70s 2.47s 2.81s 0.55s 1.65s 1.30s

225 × 128B
(4GB)

Key Size 32MB 32MB 8kB 10kB 12kB 836kB
Response Size 128B 128B 128B 128B 393kB 192B
Upload Time 6.05s 9.62s 0.13s 0.13s 0.19s 0.52s

Compute Time 6.81s 3.30s 19.15s 1.97s 4.06s 4.04s
Download Time 0.03s 0.05s 0.04s 0.03s 0.33s 0.03s

Decode Time < 1ms < 1ms 47ms < 1ms 22ms < 1ms
Total Time 12.89s 12.97s 19.37s 2.13s 4.61s 4.59s

TABLE 4: Breakdown of performance for baseline and our schemes for k = 4 and b = 2.

Database Metric Replicated Storage Erasure-Coded Storage

Tree Shamir CD Tree Shamir CD

Number of Servers 6 9 9 12 13 16
Storage Rate 1 1 1 0.25 0.5 0.25
Total Storage 6× 9× 9× 3× 6.5× 4×

222 × 512B
(2GB)

Key Size 2881B 4kB 2.8MB 8387B 4kB 340kB
Response Size 512B 2.1MB 512B 512B 525kB 768B
Upload Time 0.13s 0.13s 0.66s 0.13s 0.14s 0.40s

Compute Time 1.48s 3.59s 5.00s 0.38s 1.16s 0.87s
Download Time 0.02s 0.43s 0.02s 0.02s 0.32s 0.02s

Decode Time < 1ms 58ms < 1ms < 1ms 28ms < 1ms
Total Time 1.64s 4.20s 5.69s 0.55s 1.65s 1.30s

225 × 128B
(4GB)

Key Size 3271B 12kB 6.7MB 9641B 12kB 836kB
Response Size 128B 1.5MB 640B 128B 393kB 192B
Upload Time 0.13s 0.19s 0.94s 0.13s 0.19s 0.52s

Compute Time 6.96s 9.46s 18.78s 1.97s 4.06s 4.04s
Download Time 0.02s 0.44s 0.02s 0.03s 0.33s 0.03s

Decode Time < 1ms 42ms < 1ms < 1ms 22ms < 1ms
Total Time 7.12s 10.13s 19.75s 2.13s 4.61s 4.59s

TABLE 5: Breakdown of PIR schemes in both replicated and erasure-coded settings. The erasure-coded setting uses k = 4.

DGH TGK+ WY Tree Shamir CD
1.2¢ 1.1¢ 4.3¢ 0.6¢ 1.3¢ 1.5¢

TABLE 6: Cost estimates for the 4GB setting in Table 4
based on AWS costs ($1.5 × 10−5 per core-second of
computation, $0.09 per GB of communication.)

number of servers when compared to the replicated baseline,
we improve on both total storage and total computation.
First, when comparing total storage, our schemes utilize
28-59% less total storage. Note that as we increase b (the
number of Byzantine servers), erasure coding would further
improve on the total storage overhead for the theoretical
reasons mentioned in the previous section.

Second, when comparing the total computation of the
schemes, we find that erasure codes help improve the total
computation of the schemes by 1.61 − 2.61×. This im-
provement comes from the fact that the cost of the linear

scan is greatly reduced by erasure coding. In particular, for
the covering design scheme, which must do multiple linear
scans (based on the number of keys each server receives),
the cost incurred by each scan is greatly reduced, leading to
the large decrease of computation required of each server.
Further increasing k would help further reduce the cost of
the linear scan at the cost of addition servers.

7.3. Effect of Parameters on Performance

In this section, we discuss how the schemes scale with
individual parameters. We evaluate our protocols using the
parameters k = 4, r = 0, b = 2 unless otherwise stated.
Item Size: Figure 2a and Figure 2c show the performance
of the protocols for 220 and 222 items as we scale item size.

Our schemes outperform the robust PIR baselines across
item sizes in both settings. For a fixed number of items, the
query does not change, so the only performance difference is

(a) Latency for 220 items with
varying item sizes.

(b) Latency for varying number
of items for item size = 8B

(c) Latency for 222 items with
varying item sizes.

(d) Latency for varying number
of items for item size = 256B

Figure 2: Latency of protocols for various parameter con-
figurations. We use k = 4, b = 2 across all figures.

the amount of work incurred by the linear scan on the server,
which only depends on the item size. This means that for a
fixed number of items, the latency difference across schemes
will always be the same, since the latency difference only
comes from the query generation and upload time.

Each of the schemes scales linearly in the item size,
with the two replicated baselines having the worst scaling
slope. The DGH and WY schemes have the worst scaling,
because each server in these schemes must perform a linear
scan across a replicated database. We refer the reader to
Table 2 to see the break down of per-server computation in
terms of the PRF evaluations and the linear scan costs.

The Shamir based scheme, however, scales in a larger
constant factor with respect to item size. This stems from
the fact that the Shamir scheme requires the server to
additionally calculate

√
N intermediate sums that are later

used by the client to reconstruct the derivative for Hermite
interpolation. Since the size of these intermediary sums are
dependent on the item size, the Shamir based PIR scheme
scales at a linear factor larger than the other schemes. In
particular, the Shamir PIR scheme would begin to under-
perform the TGK+ scheme as the item size grew larger.
This breakpoint would increase for larger number of items.

No. Items N : Figure 2b and Figure 2d show the perfor-
mance of the schemes as the number of items grows, where
the item size is fixed at 8B and 256B respectively.

Our figures show that our schemes outperform the robust
PIR baselines across item sizes as the number of items
increases. This improvement stems from two sources. When
compared to the DGH and TGK+ schemes, our schemes
achieve improvement from our sublinear key size. As seen

in the previous section, the linear key generation and upload
time is the main bottleneck of those schemes. Second, when
compared to the WY scheme, our use of erasure coding
allows us to save on the server computation of each server.
As the number of items grows larger, this compute savings
allows us to achieve the latency gain seen in the figure.

MDS Code Reconstruction Threshold k:
Section 7.3 shows the performance of the erasure coding

compatible schemes for k = 2 and k = 4. A larger k
will reduce the per-server and total storage overhead at the
cost of increasing the number of servers required. For this
section, we compare our three schemes only to TGK+, the
only baseline that supports erasure coded storage.

For various values of k, our schemes outperform the
TGK+ baseline. This is largely due to the linear upload key
generation present in their scheme. Hence, as k increases,
the computation on each server decreases but their scheme
is still bottlenecked by a linear key generation time. In-
terestingly, we actually see a small increase in the latency
for their scheme as we increase k because the client must
additionally prepare a larger number of linear-sized queries
(because of the increase in the number of servers required).

Our schemes, in contrast, are bottlenecked by the server
compute, which decreases with increasing k, hence saving
on overall end-to-end latency.

Figure 3: Latency for k = 2
and k = 4 for 225 items of
size 128B

Comparison to DPF+MACs MAC verification extends any
PIR protocol to support malicious detection as follows: 1)
The client MACs every item in the database using a secret
key and uploads the MAC values to the server along with
the file payloads. We use a standard size of 256 bits for each
MAC. 2) The server runs the PIR protocol on both the item
contents as well as the MAC values. 3) After retrieving the
item and its associated MAC, the client locally verifies that
the MAC of the retrieved item equals the retrieved MAC
value using the same secret key. The security guarantees of
the MAC ensures that the item has been correctly retrieved.

Table 7 shows the total time comparing the two ap-
proaches. As expected, our approach outperforms the MAC-
based approach for all of our protocols, albeit slightly as the
item sizes grow larger. This is because the PIR protocols
must perform a linear scan across the entire database and
the additional MAC storage adds a non-trivial increase to
this workload, particularly in the case where the database
is smaller. Note that for the tree-based protocol, the savings
is very small as the key expansion is the bottleneck of the
computation, not the linear scan. For the Shamir protocol,
the large drop in performance stems from the fact that the

computation in Shamir is superlinear in the item size (a
linear scan is required for each of the O(

√
N) intermediary

sums for the Hermite interpolation).
The table does not display the setup or precomputation

costs of using MACs, which is the main computation over-
head of this approach (since the client must MAC every
item). In addition, note that in a standard multi-client appli-
cation, the system must either maintain a secret key for each
client, or implement a protocol that allows synchronization
of the key among multiple clients. This is a difficult problem
that our approach does not face, since our protocol does
not require the client to maintain any sort of secret state
locally. Our approach also allows for error correction, while
the MAC approach only allows for error detection.

Tree Shamir CD
EC MAC EC MAC EC MAC

Extra Storage (MB) 0 128 0 128 0 128
No. Servers 5 4 6 5 7 5

Total Time (s)
222 items, 8B 0.40 0.48 0.36 0.73 0.67 1.20
222 items, 64B 0.54 0.56 0.85 1.3 1.27 1.31
222 items, 256B 0.78 0.80 1.62 2.60 1.76 1.82
222 items, 1024B 1.20 1.22 4.10 7.24 3.27 3.35

TABLE 7: EC stands for Erasure-Coded. We use k = 2 and
b = 1 and a standard size of 32 bytes for each MAC. Extra
storage is per-server.

8. Related Work

PIR Private information retrieval was originally proposed
in [15]. Since then, various work have focused on reducing
the download communication cost in the original setting
with replicated servers [4], [5], [22], [46]. Non-responsive
and Byzantine servers were first considered in [36], which
protects the client from malicious responses, but cannot
perform error correction.
PIR on Erasure Coded Storage This line of work focuses
on performing PIR on data that has already been erasure
coded and distributed for the purpose of failure tolerance
with low storage-overhead. This problem was first investi-
gated by Shah et al. in [44]. Since then, there has been a long
line of work [2], [9], [14], [25], [26], [35], [37], [48], [49],
[54], [55] proposing new constructions and investigating the
fundamental tradeoffs between storage overhead, collusion
threshold, and download communication cost.

An orthogonal line of work in the cryptography commu-
nity has also looked at batch codes [33], which uses coding
theory techniques to batch multiple queries together in order
to amortize computation and communication costs.
Robust PIR This line of work considers the multi-server
setting in which the client should be able to retrieve her
desired result even when some of the servers are non-
responsive. This was first studied by Beimel et al. in [6]. The
bounds were then improved in [52]. The Byzantine setting
was considered in [19], [28]. These works all operate in the

replicated database setting. The work by Bunn et al. [13]
also considers a threshold version of DPF for PIR, but their
techniques are not compatible with erasure coded storage.

A complementary line of work in the information theory
community has studied robust PIR on coded storage. The
problem of PIR with byzantine servers has been studied
in [1], [3]. The problem of PIR with byzantine and un-
responsive servers has been studied in [49], [53]. These
works optimize for storage overhead and/or download rate,
but have linear query communication.
DPF in Systems Riposte [16] and Express [23] use
DPFs to provide metadata-hiding anonymous communica-
tion. DORY [17] and DURASIFT [24] use DPFs to perform
encrypted search queries without leaking access patterns.
DPFs were used private database queries in systems such as
Splinter [50] and Waldo [18]. Floram [21] is a multi-server
ORAM that uses DPFs to beat other ORAM approaches
for medium database sizes. DPFs have also recently used
for systems to implement private contract tracing [20] and
private nearest neighbor search [43].

9. Conclusion

We present novel robust PIR protocols that provide
better computation, communication, and storage compared
to prior state-of-art robust PIR schemes.

Acknowledgments

We thank the anonymous reviewers for their valuable
feedback. This material is based upon work supported by the
National Science Foundation Award NSF SaTC 2326312,
Sloan Research Fellowship 2023 and gift funding from
Cisco and VMware.

References

[1] Daniel Augot, Françoise Levy-dit Vehel, and Abdullatif Shikfa. A
storage-efficient and robust private information retrieval scheme al-
lowing few servers. In Dimitris Gritzalis, Aggelos Kiayias, and
Ioannis Askoxylakis, editors, Cryptology and Network Security, pages
222–239, Cham, 2014. Springer International Publishing.

[2] Karim Banawan and Sennur Ulukus. The capacity of private in-
formation retrieval from coded databases. IEEE Transactions on
Information Theory, 64(3):1945–1956, 2018.

[3] Karim Banawan and Sennur Ulukus. The capacity of private in-
formation retrieval from byzantine and colluding databases. IEEE
Transactions on Information Theory, 65(2):1206–1219, 2019.

[4] Amos Beimel and Yuval Ishai. Information-theoretic private informa-
tion retrieval: A unified construction. In International Colloquium on
Automata, Languages, and Programming, pages 912–926. Springer,
2001.

[5] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and J-F Raymond.
Breaking the O(n1/(2k−1)) barrier for information-theoretic private
information retrieval. In The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings., pages 261–
270. IEEE, 2002.

[6] Amos Beimel and Yoav Stahl. Robust information-theoretic private
information retrieval. In International Conference on Security in
Communication Networks, pages 326–341. Springer, 2002.

[7] Fabrice Benhamouda, Elette Boyle, Niv Gilboa, Shai Halevi, Yuval
Ishai, and Ariel Nof. Generalized pseudorandom secret sharing
and efficient straggler-resilient secure computation. In Theory of
Cryptography Conference, pages 129–161. Springer, 2021.

[8] E. Berlekamp and L. Welch. Error correction for algebraic block
codes, 1983.

[9] Simon R. Blackburn, Tuvi Etzion, and Maura B. Paterson. PIR
schemes with small download complexity and low storage require-
ments. IEEE Transactions on Information Theory, 66(1):557–571,
2020.

[10] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing.
In Annual international conference on the theory and applications of
cryptographic techniques, pages 337–367. Springer, 2015.

[11] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing.
In Annual international conference on the theory and applications of
cryptographic techniques, pages 337–367. Springer, 2015.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 1292–1303, New York, NY, USA, 2016. Association
for Computing Machinery.

[13] Paul Bunn, Eyal Kushilevitz, and Rafail Ostrovsky. CNF-FSS and
its applications. Cryptology ePrint Archive, Paper 2021/163, 2021.
https://eprint.iacr.org/2021/163.

[14] Terence H Chan, Siu-Wai Ho, and Hirosuke Yamamoto. Private
information retrieval for coded storage. In 2015 IEEE International
Symposium on Information Theory (ISIT), pages 2842–2846. IEEE,
2015.

[15] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.
Private information retrieval. Journal of the ACM (JACM), 45(6):965–
981, 1998.

[16] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An
anonymous messaging system handling millions of users. In 2015
IEEE Symposium on Security and Privacy, pages 321–338. IEEE,
2015.

[17] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and
Ion Stoica. DORY: An encrypted search system with distributed
trust. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1101–1119, 2020.

[18] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica.
Waldo: A private time-series database from function secret sharing.
In 2022 IEEE Symposium on Security and Privacy (SP), pages 2450–
2468. IEEE, 2022.

[19] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally robust
private information retrieval. In 21st USENIX Security Symposium
(USENIX Security 12), pages 269–283, 2012.

[20] Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky, Mohamed
Elsabagh, Nikolaos Kiourtis, Brian Schulte, and Angelos Stavrou.
Function secret sharing for psi-ca: With applications to private contact
tracing. arXiv preprint arXiv:2012.13053, 2020.

[21] Jack Doerner and Abhi Shelat. Scaling ORAM for secure compu-
tation. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 523–535, 2017.

[22] Zeev Dvir and Sivakanth Gopi. 2-server PIR with subpolynomial
communication. Journal of the ACM (JACM), 63(4):1–15, 2016.

[23] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan
Boneh. Express: Lowering the cost of metadata-hiding communica-
tion with cryptographic privacy. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1775–1792, 2021.

[24] Brett Hemenway Falk, Steve Lu, and Rafail Ostrovsky. DURASIFT:
A robust, decentralized, encrypted database supporting private
searches with complex policy controls. In Proceedings of the 18th
ACM Workshop on Privacy in the Electronic Society, WPES’19,
page 26–36, New York, NY, USA, 2019. Association for Computing
Machinery.

[25] Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Codes for dis-
tributed PIR with low storage overhead. In 2015 IEEE International
Symposium on Information Theory (ISIT), pages 2852–2856. IEEE,
2015.

[26] Ragnar Freij-Hollanti, Oliver W Gnilke, Camilla Hollanti, and
David A Karpuk. Private information retrieval from coded databases
with colluding servers. SIAM Journal on Applied Algebra and
Geometry, 1(1):647–664, 2017.

[27] Niv Gilboa and Yuval Ishai. Distributed point functions and their
applications. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, pages 640–658, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[28] Ian Goldberg. Improving the robustness of private information re-
trieval. In 2007 IEEE Symposium on Security and Privacy (SP’07),
pages 131–148. IEEE, 2007.

[29] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to
construct random functions. Journal of the ACM (JACM), 33(4):792–
807, 1986.

[30] Daniel M Gordon and Douglas R Stinson. Coverings. In Handbook
of Combinatorial Designs, pages 391–398. Chapman and Hall/CRC,
2006.

[31] Shaddi Hasan, Yahel Ben-David, Giulia Fanti, Eric Brewer, and
Scott Shenker. Building dissent networks: Towards effective coun-
termeasures against {Large-Scale} communications blackouts. In
3rd USENIX Workshop on Free and Open Communications on the
Internet (FOCI 13), 2013.

[32] Intel. Intel® intelligent storage acceleration library. https://www.intel.
com/content/www/us/en/developer/tools/isa-l/overview.html. Ac-
cessed: 2022-10-11.

[33] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Batch codes and their applications. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 262–271,
2004.

[34] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme
realizing general access structure. Electronics and Communications
in Japan (Part III: Fundamental Electronic Science), 72(9):56–64,
1989.

[35] Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat.
Private information retrieval in distributed storage systems using an
arbitrary linear code. In 2017 IEEE International Symposium on
Information Theory (ISIT), pages 1421–1425. IEEE, 2017.

[36] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed:
Single database, computationally-private information retrieval. In
Proceedings 38th annual symposium on foundations of computer
science, pages 364–373. IEEE, 1997.

[37] Julien Lavauzelle. Private information retrieval from transversal
designs. IEEE Transactions on Information Theory, 65(2):1189–1205,
2019.

[38] Mingyu Li, Jinhao Zhu, Tianxu Zhang, Cheng Tan, Yubin Xia,
Sebastian Angel, and Haibo Chen. Bringing decentralized search to
decentralized services. In 15th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 21), pages 331–347,
2021.

[39] Florence Jessie MacWilliams and Neil James Alexander Sloane. The
theory of error-correcting codes, volume 16. Elsevier, 1977.

[40] OpenSSL project authors. OpenSSL: Cryptography and SSL/TLS
toolkit. https://www.openssl.org/. Accessed: 2022-10-11.

[41] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica,
and Kannan Ramchandran. EC-Cache:Load-Balanced, Low-Latency
Cluster Caching with Online Erasure Coding. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), pages 401–417, 2016.

[42] Sacha Servan-Schreiber, Kyle Hogan, and Srinivas Devadas. AdVeil:
A private targeted advertising ecosystem. Cryptology ePrint Archive,
2021.

https://eprint.iacr.org/2021/163
https://www.intel.com/content/www/us/en/developer/tools/isa-l/overview.html
https://www.intel.com/content/www/us/en/developer/tools/isa-l/overview.html
https://www.openssl.org/

[43] Sacha Servan-Schreiber, Simon Langowski, and Srinivas Devadas.
Private approximate nearest neighbor search with sublinear commu-
nication. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 911–929. IEEE, 2022.

[44] Nihar B. Shah, K. V. Rashmi, and Kannan Ramchandran. One extra
bit of download ensures perfectly private information retrieval. In
2014 IEEE International Symposium on Information Theory, pages
856–860, 2014.

[45] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[46] Hua Sun and Syed Ali Jafar. The capacity of private information
retrieval. IEEE Transactions on Information Theory, 63(7):4075–
4088, 2017.

[47] Apache Hadoop Distributed File System. HDFS Erasure
Coding. https://hadoop.apache.org/docs/r3.2.4/hadoop-project-dist/
hadoop-hdfs/HDFSErasureCoding.html. Accessed: 2023-12-08.

[48] Razane Tajeddine, Oliver W Gnilke, and Salim El Rouayheb. Private
information retrieval from MDS coded data in distributed storage
systems. IEEE Transactions on Information Theory, 64(11):7081–
7093, 2018.

[49] Razane Tajeddine, Oliver W Gnilke, David Karpuk, Ragnar Freij-
Hollanti, and Camilla Hollanti. Private information retrieval from
coded storage systems with colluding, byzantine, and unresponsive
servers. IEEE Transactions on information theory, 65(6):3898–3906,
2019.

[50] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikun-
tanathan, and Matei Zaharia. Splinter: Practical private queries on
public data. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 299–313, 2017.

[51] Shangping Wang, Yinglong Zhang, and Yaling Zhang. A blockchain-
based framework for data sharing with fine-grained access control in
decentralized storage systems. Ieee Access, 6:38437–38450, 2018.

[52] David Woodruff and Sergey Yekhanin. A geometric approach to
information-theoretic private information retrieval. In 20th Annual
IEEE Conference on Computational Complexity (CCC’05), pages
275–284. IEEE, 2005.

[53] Yiwei Zhang and Gennian Ge. Private information retrieval from
MDS coded databases with colluding servers under several variant
models, 2017.

[54] Yiwei Zhang and Gennian Ge. A general private information retrieval
scheme for MDS coded databases with colluding servers. Des. Codes
Cryptogr., 87(11):2611–2623, 2019.

[55] Ruida Zhou, Chao Tian, Hua Sun, and Tie Liu. Capacity-achieving
private information retrieval codes from MDS-coded databases with
minimum message size. IEEE Transactions on Information Theory,
66(8):4904–4916, 2020.

Appendix A.
Correctness and Security Proofs of DPF Pro-
tocols

A.1. Section 4.1

Theorem 1. The DPF in Algorithm 1 is a (p, 1, p−2)-robust
distributed point function.
Proof Sketch We prove the correctness and security of
the tree-based DPF described in Section 4.1. We show the
correctness and security of the scheme separately.
Correctness To prove correctness of DPF.Gen(1λ, α, β)→
(K0, . . . ,Kp−1), it satisfies to show for pair of keys K0,Kj ,

where j ∈ [1, . . . , p−1] that the expanded versions of these
keys represent the expanded random vectors r⃗ and r⃗+jβ·e⃗α.
Note that if this holds, then the correctness of the full DPF
directly follows, as this guarantees that all pairs of keys
Ki,Kj have the expanded random vector values r⃗+ iβ · e⃗α
and r⃗ + jβ · e⃗α.

To prove this, we demonstrate how to reduce the cor-
rectness guarantee to the same correctness argument in [10].
To do this for the specific pair of keys, there are three main
steps. First, we show that the seeds and the j’th correction
bit satisfies the same invariant as [10]. Second, we show the
additional invariant that the other correctness bits are secret
shares of zero. Finally, we show that the final conversion
step indeed satisfies the above correctness requirement.

For the first two conditions, consider the two
keys K0 = s0||CW (1)||...||CW (n+1) and Kj =
sj ||CW (1)||...||CW (n+1). Now, view the current seeds and
correction bits as secret shares of a global seed. Specifically
if the current seed at party 0 is s0 and the current seed at
party j is sj , we can also view this as secret shares of some
seed [s] = s0⊕sj . Additionally, we can view the correction
bits are secret shares that obey the invariant [tj] = 1, and
[tk] = 0 for all k ̸= j.

We demonstrate that the invariants hold during the tree
expansion via induction. Note that the base case clearly
satisfy the invariants. Now consider the tree expansion at an
arbitrary level in the tree on the special path. By our invari-
ant, all correction bits except for the j’th one are identical.
This implies that the contributions of everything except the
j’th correction word are equivalent to adding secret shares
of zero. This reduces the problem to a single pair of secret-
shared seeds and a single secret-shared correction bit, which
is equivalent to the original DPF construction in [10]. This is
enough to claim that the j’th correction bit indeed satisfies
the required invariant. Next, note that all other correction
bits still satisfy the additional invariant since the values of
those correction bits are not affected by the j’th correction
word.

Finally, on the last step of the protocol, the values of the
tree are converted to an output value. Note that on all non-
special indices, the seeds and correction bits are fixed so
the outputs will also be identical because the conversion
is deterministic. Finally, for the special index, since all
correction bits apart from the j’th one are secret shares of
zero, they do not contribute anything to the final output
value.

Now consider the contribution of the j’th correction
word. There are two cases. Either t

(n)
0 = 0 and t

(n)
j = 1

or vice versa.
1) In the first case, note that the output of key 0 is

Conv(s0) and the output of key j is Conv(snj) = k ∗β,
which satisfies our correctness condition.

2) In the second case, the output of key 0 is Conv(s
(n)
j)

and the output of key j is Conv(s
(n)
j)+kβ, which also

satisfies the correctness condition.

Security Our proof of security follows the blueprint of
[10]. Specifically, we show that each party’s key kp is

https://hadoop.apache.org/docs/r3.2.4/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.2.4/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

pseudorandom, assuming that an adversary only has access
to a single key. This can be done using a standard hybrid
argument, where in each step we replace one of the
correction words CW (i) = {CW

(i)
k }

p−1
k=1 from being the

honestly generated correction word to a truly random string.

Explicitly, define the hybrid experiment in Algorithm 6,
for 0 ≤ j ≤ n + 1. Note when j = 0 this is precisely the
functionality described in DPF.Gen, while if j = n+1, then
the key is truly random. Thus, it satisfies to show that two
adjacent hybrid experiments are indistinguishable based on
the security of PRG.

Algorithm 6 Hybj algorithm

Hybj(1
λ, p, α, β):

1: Let α = α1, ..., αn ∈ {0, 1}n be the bit decomposition
of α.

2: Sample random seeds s
(0)
0 , ..., s

(0)
p−1 ← {0, 1}λ

3: for i = 0, ..., p− 1 do
4: For d = 0, ...p−1, set t(0)i,d = 1 if i = d, 0 otherwise.

5: for i = 1, ..., n do
6: sLp ||{tLp,k}p−1k=1 ∥ sRp ||{tRp,k}

p−1
k=1 ← G(s

(i−1)
p)

7: If αi = 0 then Keep← L, Lose← R. Else Keep←
R, Lose← L

8: If i < j, then uniformly sample CW (i) ←
{0, 1}(p−1)λ+2(p−1)

9: Else, compute CW (i) according to Algorithm 1

10: if j = n+1, then CW (n+1) ← Gp−1. Else CW
(n+1)
k ←

(−1)t
(n)
k,k [k ·β−Convert(s

(n)
0)+Convert(s

(n)
k)] for k =

1, ..., p− 1
11: Let CW (n+1) = {CW

(n+1)
k }p−1k=1

12: Let kp = s
(0)
p ||CW (1)||...||CW (n+1)

13: return kp

To do so, consider a hybrid game distinguishing adver-
sary A| that is able to distinguish between Hybj−1 and Hybj
for arbitrary j. We construct a corresponding PRG adversary
B, in which the adversary B is given a value r which is either
truly random, or sampled from a PRG with some random
seed. Then the PRG adversary B, for a fixed α, β can be
constructed as follows:
• Let s

(0)
p ← {0, 1}λ be random seeds, and define

{t(0)p,j}p−1j=0 as defined in DPF.Gen.
• The first j correction words CW (j) = {CW

(j)
k }

p−1
k=1

are chosen uniformly at random.
• for i ≤ j − 1 the seeds and control bits are generated

honestly.
• For i = j, the seeds and control bits are set according

to the random string r given from the PRG adversary,
which is either a truly random string, or generated
according to a PRG.

• For i > j, all remaining values are computed as defined
in DPF.Gen, as a function of previous values.

• Output key kp.

Consider B’s success in the PRG game as a function of
A’s success in distinguishing Hybj−1 from Hybj . If r was
computed pseudorandomly, then it is clear that the generated
kp is distributed as Hybj−1.

Similarly, if r was sampled at random, then the gen-
erated kp is distributed as Hybj . Specifically, given that r

is random, then the computed values of s
(j)
p and CW (j)

are distributed randomly conditioned on the values of
s
(0)
p , CW (0), . . . , CW (j−1), and the tp’s satisfy the invariant

as described in Section 4.1. This mechanically follows the
steps taken in [10], which essentially demonstrates that the
true random string behaves as a one-time pad on the existing
values.

Combining these pieces together, we have that if r is
random, then the resulting distribution of kp is precisely
distributed as Hybj . Thus, the advantage of B is equivalent
to the advantage of A, showing that the advantage of A is
negligible as desired.

A.2. Correctness and Security of Section 4.3

Theorem 2. The DPF in Section 4.3 is a (p, t, r)-robust
distributed point function for p ≥ dt

2 + r + 1.
Correctness Correctness directly follows from the correct-
ness of Hermite interpolation.
Security Security directly follows from the fact that each
DPF key is composed of O(dN

1
d) independently sample

Shamir secret shares, which are information-theoretically
secure.

A.3. Correctness and Security of Section 4.2

Theorem 3. The DPF in Section 4.2 is a (p, t, r)-robust
distributed point function for p ≥ m+ r + 1, m ≥ t.
Proof We prove the correctness and security of the covering
design-based DPF described in Section 4.1. First, recall the
definition of covering design:

Definition A.1. A (p,m, t)−covering design is a collection
of q subsets A1, . . . , Aq, each of size m, such that for any
subset T ⊂ [p] of size t, there exists an Ai such that T ⊆ Ai.
We now show the correctness and security of the scheme
separately.
Correctness Recall that the covering design based DPF
scheme generates q keys with black-box use of a multiparty
DPF scheme. It thus satisfies to show that for each of the q
keys Ki, the client is able to retrieve the evaluation from at
least one of the p− r responding servers.

Consider any arbitrary multiparty-DPF key Kj , j ∈ [q].
By construction of our covering design scheme, this key is
received by exactly p − m ≥ (m + r + 1) − m ≥ r + 1
parties. Thus, by pigeonhole principle, at least one of the
p− r responding srevers contains the evaluation of Kj .

Because this is true for every key, correctness imme-
diately follows due to the correctness of the underlying
(p, p− 1)-multiparty DPF.

Security We reduce the security of the DPF scheme de-
scribed in Section 4.2 to the security of the underlying
(p, p − 1)-multiparty DPF, which was used in a black-box
manner in the scheme.

Consider any arbitrary adversary that corrupts any ran-
dom subset of t parties T = {i1, ..., it} ∈ [p]. By definition
of covering design, there exists at least one out of the q
keys, Kj , that is not held by any of these t parties. This is
due to the fact that for any arbitrary subset, there exists
a corresponding Aj such that T ∈ Aj by definition of
covering design. Because Aj is a cover for the corrupted
parties and the corresponding key is only given to the parties
not contained in the cover, this implies that the adversary
only holds at most q − 1 out of q multiparty-DPF keys.
Hence, security immediately follows due to the security of
the underlying multiparty DPF scheme.

Appendix B.
Correctness of PIR Protocols

We now prove the correctness of each of our PIR
schemes. Note that the security of these schemes imme-
diately follows from the underlying DPF protocols, whose
security were proven in the previous section.

B.1. Correctness of Algorithm 3

Theorem 4. The scheme in Algorithm 3 is a (p, t, r, b)-
robust PIR protocol.

Proof We prove the result for a specific case that only
requires the client to prepare one set of DPF keys. Note
that this proof that can be generalized so that the protocol
requires fewer servers at the cost of additional linear queries
/ per-server computation. We refer the reader to [49] for
details, and note that the proof can be directly generalized
to this setting.

Assume that the client is querying for an index i. Then,
consider the key Kj and the server contents Xj at some
Server j. It satisfies to show that the response from this
server is a degree k polynomial evaluated at j, and k of the
coefficients are equal to X[i]1, ..., X[i]k. Let DPF.Eval(Kj)
be equivalent to the complete expansion of the key on every
index from 1 to N . More specifically, DPF.Eval(Kj) = r⃗+
jk · e⃗i for some random vector r⃗.

Next, note that this means that the response from Server
j is equal to the value

respj = DPF.Eval(Kj) · Xj

= (r⃗ + jk · e⃗i) · Xj

Letting fi(j) = X[i]1+X[i]2 ·j+ ...+X[i]k ·jk−1 equal
the degree k−1 polynomial that is equal to the erasure-coded
representation of file i stored at Server j, we can rewrite the
response of Server j as follows:

respj = (r⃗ + jk · e⃗i) · Xj

=

N∑
i=1

ri · fi(j) + jk · fi(j)

=

N∑
i=1

ri · fi(j) +X[i]1j
k + ...+X[i]kj

2k−1

The above is a degree 2k − 1 polynomial where the
coefficients of the last k terms are indeed the k shards
of the file looking to be recovered. Hence, with 2k + 2b
responses, the file can be recovered via Berlekamp-Welch
with probability 1.

B.2. Correctness of Algorithm 4

Proof We prove the correctness result for the specific case
d = 2 for ease of readability, but correctness for general
d is proven identically. For a database X , each Server i,
i ∈ [dt2 + k + r + 2b] stores the following 2N values:

Si =

{
{fi(x) = X[i]1 +X[i]2 · x+ · · ·+ ·X[i]k · xk−1}Ni=1

{f ′i(x) = X[i]2 + · · ·+ (k − 1) ·X[i]k · xk−2}Ni=1

When querying for an index α = (α1||α2), such that
α1

√
N + α2 = α, the client prepares a key according to

Algorithm 2. On each Server j, the server now has the
necessary information to compute the following

√
N + 2

values, which are sent to the client:
• val(j) =

∑N
i=1 r1[i1](j)r2[i2](j)fi(j)

• Ai1(j) =
∑√N

i2=1 r2[i2](j)fi1||i2(j) for i1 = 1, . . . ,
√
N

• Bi2(j) =
∑√N

i1=1 r1[i1](j)fi1||i2(j) for i2 = 1, . . . ,
√
N

• val′(j) =
∑N

i=1 r1[i1](j)r2[i2](j)f
′
i(j)

Since at most r servers are non-responsive, the client
receives at least q = dt

2 +k+2b responses, where at most b
of these are Byzantine. WIthout loss of generality, assume
that these responses are from the first q parties. Then note
that the client now has the values res(j)qj=1 = val(j)qj=1, and
has enough information to locally compute the values:

res′(j) =
N∑
i=1

r′1[i1]r2[i2]fi(j) +

N∑
i=1

r1[i1]r
′
2[i2]fi(j)

+

N∑
i=1

r1[i1]r2[i2]f
′
i(j)

=

√
N∑

i1=1

r′1[i1](j)Ai1(j) +

√
N∑

i2=1

r′2[i2](j)Bi2(j) + val′(j)

With the 2q values res(j) and res′(j), the client can now
perform Hermite interpolation to recover their desired result.

B.3. Correctness of Algorithm 5

Theorem 5. The scheme in Algorithm 5 is a (p, t, r, b)-
robust PIR protocol for p ≥ m+ k + r + 2b,m ≥ t

Proof Assume that the client is querying for the value X[i],
and it is located in the δ’th portion of the database. First,
recall that the response from each server j is the following:

respj = {
N
k∑

i=1

DPF.Eval(Kα, i) · Xj [i] | Kα ∈ σj}

where σj represents the set of keys received by party j. This
is equivalent to the following:

respj = {fα(j) | Kα ∈ σj}

where fα(j) =
∑N

k
i=1 DPF.Eval(Kα, i) · Xj [i] is a degree

k − 1 polynomial.
Consider the portions of the responses that correspond

to an arbitrary key Kα. By the properties of covering design,
this key is received by p−m = k+ r+2b parties. Because
at most r parties are non-responsive, this implies that the
client receives at least p′ = k + 2b responses for this key.
Denote these parties i1, ..., ip′ .

Consider the set of p′ values fα(i1), ..., fα(ip′). These
are evaluations of the function

fα(x) =

N
k∑

i=1

DPF.Eval(Kα, i) · Xx[i]

=

N
k∑

i=1

DPF.Eval(Kα, i) · Xx[i]

=

N
k∑

i=1

DPF.Eval(Kα, i) · (X1[i] + ...+Xk[i] · xk−1)

Letting v⃗ represent the expanded vector of the DPF key,
we can rewrite the above as follows:

fα(x) = v⃗ ·X1 + (v⃗ ·X2)x+ ...+ (v⃗ ·Xk)x
k−1

Because this is a degree k − 1 polynomial, k + 2b
responses are enough to interpolate this polynomial via
Berlekamp-Welch. Hence, we can retrieve the value v⃗ ·Xδ

for any δ. This means that the client can retrieve the value∑N
k
i=1 DPF.Eval(Kα, i) ·Xδ[i]. for any δ.
Since the above holds true for each of the q keys,

correctness immediately follows due to the correctness of
the underlying multiparty DPF, allowing the client to retrieve
the value X[i] as desired.

.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper presents new fault-tolerant PIR construc-
tions with smaller communication costs, along with lower
server-side storage overheads and computation costs, com-
pared to prior work. To design these schemes, the au-
thors combine techniques from the cryptography literature
(namely, distributed point functions, which give rise to the
most communication-efficient PIR schemes) and from the
information-theory literature (namely, maximum distance
separable codes, which reduce the server-side storage). The
downside of these schemes is that they rely on a relatively
large number of non-colluding servers to host the PIR
database, though this setting is motivated in decentralized,
peer-to-peer applications.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

C.3. Reasons for Acceptance

1) A prior version of this submission was invited to be
resubmitted following major revisions during the 2023
review cycle. The authors put significant effort into the
reviewers requests. In comparison to the original paper,
this work emphasizes fault tolerance for multi-server
PIR protocols as the main contribution of the work
and provides clearly comparisons to past protocols. The
authors also expanded their evaluation and reconfigured
experiments to be more realistic, as well as providing
an experimental comparison between the costs of the
new PIR schemes and the costs of using DPFs +
MACs. Reviewers appreciated the expanded treatment
of related work and the additional experimentation.

	Introduction
	Background
	Preliminaries
	Secret Sharing
	Distributed Point Function
	Maximum Distance Separable (MDS) Codes

	Threat Model and Security Guarantees
	Fault-tolerant DPF definitions
	Fault-tolerant PIR definitions

	Fault Tolerant DPF Schemes
	Multi-server DPF with no collusion
	Multi-Server DPF using Covering Designs
	Information-theoretic multi-server DPF

	Communication-efficient PIR over erasure coded databases
	Erasure code PIR building block
	Fault-tolerant PIR protocol 1—no collusion
	Fault-tolerant PIR protocol 2 — Shamir-based PIR
	Fault-tolerant PIR protocol 3 — leveraging covering design-based DPF
	Extending to Malicious Security

	Implementation
	Evaluation
	Theoretic Performance
	Cost Breakdown
	Effect of Parameters on Performance

	Related Work
	Conclusion
	References
	Appendix A: Correctness and Security Proofs of DPF Protocols
	Section 4.1
	Correctness and Security of Section 4.3
	Correctness and Security of Section 4.2

	Appendix B: Correctness of PIR Protocols
	Correctness of alg:treepir
	Correctness of alg:shamircodedpir
	Correctness of alg:codedpirrss

	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

